Machine Learning Approaches For Motor Learning: A Short Review - Archive ouverte HAL
Article Dans Une Revue Frontiers in Computer Science Année : 2020

Machine Learning Approaches For Motor Learning: A Short Review

Baptiste Caramiaux
Téo Sanchez

Résumé

Machine learning approaches have seen considerable applications in human movement modeling, but remain limited for motor learning. Motor learning requires accounting for motor variability, and poses new challenges as the algorithms need to be able to differentiate between new movements and variation of known ones. In this short review, we outline existing machine learning models for motor learning and their adaptation capabilities. We identify and describe three types of adaptation: Parameter adaptation in probabilistic models, Transfer and meta-learning in deep neural networks, and Planning adaptation by reinforcement learning. To conclude, we discuss challenges for applying these models in the domain of motor learning support systems.
Fichier principal
Vignette du fichier
caramiaux_etal_ml_motorlearning.pdf (111.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02558779 , version 1 (29-04-2020)

Identifiants

Citer

Baptiste Caramiaux, Jules Françoise, Wanyu Liu, Téo Sanchez, Frédéric Bevilacqua. Machine Learning Approaches For Motor Learning: A Short Review. Frontiers in Computer Science, inPress, 2, pp.16. ⟨10.3389/fcomp.2020.00016⟩. ⟨hal-02558779⟩
370 Consultations
418 Téléchargements

Altmetric

Partager

More