Keyphrase Generation for Scientific Document Retrieval - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Keyphrase Generation for Scientific Document Retrieval

Résumé

Sequence-to-sequence models have lead to significant progress in keyphrase generation, butit remains unknown whether they are reli-able enough to be beneficial for document re-trieval.This study provides empirical evi-dence that such models can significantly improve retrieval performance, and introducesa new extrinsic evaluation framework that al-lows for a better understanding of the limi-tations of keyphrase generation models. Using this framework, we point out and dis-cuss the difficulties encountered with supplementing documents with –not present in text– keyphrases, and generalizing models acrossdomains. Our code is available at https://github.com/boudinfl/ir-using-kg
Fichier principal
Vignette du fichier
nkg4ir.pdf (130.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02556086 , version 1 (27-04-2020)
hal-02556086 , version 2 (13-05-2020)

Identifiants

Citer

Florian Boudin, Ygor Gallina, Akiko Aa Aizawa. Keyphrase Generation for Scientific Document Retrieval. The 58th Annual Meeting of the Association for Computational Linguistics (ACL), Jul 2020, Online, United States. ⟨10.18653/v1/2020.acl-main.105⟩. ⟨hal-02556086v2⟩
207 Consultations
290 Téléchargements

Altmetric

Partager

More