Geometrical optimization for a photovoltaic installation equipped with flat reflectors based on plane of array estimations
Résumé
In order to design, manage and optimize the performance of a photovoltaic (PV) installation and establish a precise power production estimation, irradiance on the plane of array (POA) in relation with the geometrical characteristics of the PV modules installation occupies a high importance. This study focuses on the development of an estimation model of the POA irradiance for a photovoltaic installation equipped with flat reflectors. The model includes solar irradiance components (global, direct and diffuse), geometrical parameters and geographical characteristics of the PV installation. Experimental validations have been performed with measurements taken at the SIRTA Observatory (48.7°N, 2.2°E) in Palaiseau, France, for the period starting from June 2017 to June 2018. Results show mean absolute errors (relative to the mean) of 6% and 7% for an installation without and with planar reflector. Finally, we present several geometrical optimization strategies of the PV-reflector installation relying on two major variables: the reflector's length (LR) compared to the length of the PV module (LPV) and the tilt angle adjustment frequency (monthly, seasonally, fixed) of the system (for both PV and the reflectors). The objective of such optimization is to discuss about a reasonable configuration to achieve a maximum POA irradiance. Results show that the length of the mirrors highly affects the efficiency and performances of the PV-Reflector system and the annual gain increased from 8.5% to 28.7% when going from LR = LPV/2 to LR = 2 × LPV compared to a monthly-optimized installation without mirrors. As for the adjustment frequency, we show that a monthly-varied architecture is the most advantageous option with a 28.2 and 31.6% increasing in annual gain compared to a seasonal varied or fixed ones, respectively.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...