The Theoretical Shapley-Shubik Probability of an Election Inversion in a Toy Symmetric Version of the U.S. Presidential Electoral System - Archive ouverte HAL
Article Dans Une Revue Social Choice and Welfare Année : 2020

The Theoretical Shapley-Shubik Probability of an Election Inversion in a Toy Symmetric Version of the U.S. Presidential Electoral System

Résumé

In this article, we evaluate asymptotically the probability ϕ(n) of an election inversion in a toy symmetric version of the US presidential electoral system. The novelty of this paper, in contrast to all the existing theoretical literature, is to assume that votes are drawn from an IAC (Impartial Anonymous Culture)/Shapley–Shubik probability model. Through the use of numerical methods, it is conjectured, that n−−√ϕ(n) converges to 0.1309 when n (the size of the electorate in one district) tends to infinity. It is also demonstrated that ϕ(n)=o(ln(n)3n−−−−√) and ϕ(n)=Ω(1n√).
Fichier principal
Vignette du fichier
wp_tse_671.pdf (525.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02547744 , version 1 (20-04-2020)

Identifiants

Citer

Olivier de Mouzon, Thibault Laurent, Michel Le Breton, Dominique Lepelley. The Theoretical Shapley-Shubik Probability of an Election Inversion in a Toy Symmetric Version of the U.S. Presidential Electoral System. Social Choice and Welfare, 2020, 54 (2-3), pp.363-395. ⟨10.1007/s00355-018-1162-0⟩. ⟨hal-02547744⟩
157 Consultations
74 Téléchargements

Altmetric

Partager

More