Effects of strain rate and temperature on the mechanical behavior of high-density polyethylene - Archive ouverte HAL Access content directly
Journal Articles Journal of Applied Polymer Science Year : 2020

Effects of strain rate and temperature on the mechanical behavior of high-density polyethylene

Abstract

The objective of this work is to initiate the discussion about multiphysics relationships between the molten and solid states of high-density polyethylene (HDPE). The extrusion and the injection processes are employed to prepare samples, and the experimental procedures, using differential scanning calorimetry, dynamic thermomechanical analysis (DMTA), thermal gravimetric analysis, and rheological measurements, are defined to choose the optimal variables. After different characterizations, the extrusion and injection temperatures of 220 and 230 °C have been chosen. To investigate the viscoelastic behavior of HDPE, the DMTA is used. To perform the high strain rate tensile tests, tensile machine was equipped with a specific furnace. Two temperatures, −20 and 20 °C, with strain rates varying from 0.001 to 100 seconds−1 were used to compare the flow characteristics. Results showed that by increasing the strain rate the molecular mobility of the HDPE chains is decreased. In addition, to the tests at −20 °C, the increase of Young's modulus can be properly observed, under high strain rates.
Fichier principal
Vignette du fichier
PIMM_JAPS_2020_LAMRI.pdf (2.28 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02545697 , version 1 (17-04-2020)

Identifiers

Cite

Abderrahmane Lamri, Mohammadali Shirinbayan, Michael Pereira, Laurianne Truffault, Joseph Fitoussi, et al.. Effects of strain rate and temperature on the mechanical behavior of high-density polyethylene. Journal of Applied Polymer Science, 2020, 137 (23), pp.48778. ⟨10.1002/app.48778⟩. ⟨hal-02545697⟩
107 View
1218 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More