Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs

Résumé

We propose a novel deep learning-based framework to tackle the challenge of semantic segmentation of large-scale point clouds of millions of points. We argue that the organization of 3D point clouds can be efficiently captured by a structure called superpoint graph (SPG), derived from a partition of the scanned scene into geometrically homogeneous elements. SPGs offer a compact yet rich representation of contextual relationships between object parts, which is then exploited by a graph convolutional network. Our framework sets a new state of the art for segmenting outdoor LiDAR scans (+11.9 and +8.8 mIoU points for both Semantic3D test sets), as well as indoor scans (+12.4 mIoU points for the S3DIS dataset).
Fichier principal
Vignette du fichier
SPG.pdf (4.83 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02545223 , version 1 (16-04-2020)

Identifiants

  • HAL Id : hal-02545223 , version 1

Citer

Loic Landrieu, Martin Simonovsky. Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs. CVPR 2018, IEEE Conference on Computer Vision and Pattern Recognition, Jun 2018, Salt Lake City, France. ⟨hal-02545223⟩
113 Consultations
83 Téléchargements

Partager

More