A Chopper Stabilization Audio Instrumentation Amplifier for IoT Applications
Résumé
A low-noise instrumentation amplifier dedicated to a nano-and micro-electro-mechanical system (M&NEMS) microphone for the use in Internet of Things (IoT) applications is presented. The piezoresistive sensor and the electronic interface are respectively, silicon nanowires and an instrumentation amplifier. To design an instrumentation amplifier for IoT applications, different trade-offs are discussed like power consumption, gain, noise and sensitivity. Because the most critical noisy block is the amplifier, a delay-time chopper stabilization (CHS) technique is implemented around it to eliminate its offset and 1/f noise. The low-noise instrumentation amplifier is implemented in a 65-nm CMOS (Complementary metal-oxide-semiconductor) technology. The supply voltage is 2.5 V while the power consumption is 0.4 mW and the core area is 1 mm 2. The circuit of the M&NEMS microphone and the amplifier was fabricated and measured. From measurement results over a signal bandwidth of 20 kHz, it achieves a signal-to-noise ratio (SNR) of 77 dB.
Fichier principal
Nebhen, Ferreira, Mansouri - 2020 - A Chopper Stabilization Audio Instrumentation Amplifier for IoT Applications(2).pdf (1007.88 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|