Bootstraps Regularize Singular Correlation Matrices - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Bootstraps Regularize Singular Correlation Matrices

Résumé

I show analytically that the average of $k$ bootstrapped correlation matrices rapidly becomes positive-definite as $k$ increases, which provides a simple approach to regularize singular Pearson correlation matrices. If $n$ is the number of objects and $t$ the number of features, the averaged correlation matrix is almost surely positive-definite if $k> \frac{e}{e-1}\frac{n}{t}\simeq 1.58\frac{n}{t}$ in the limit of large $t$ and $n$. The probability of obtaining a positive-definite correlation matrix with $k$ bootstraps is also derived for finite $n$ and $t$. Finally, I demonstrate that the number of required bootstraps is always smaller than $n$. This method is particularly relevant in fields where $n$ is orders of magnitude larger than the size of data points $t$, e.g., in finance, genetics, social science, or image processing.
Fichier principal
Vignette du fichier
report_kbahc.pdf (348.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02536278 , version 1 (08-04-2020)

Identifiants

Citer

Christian Bongiorno. Bootstraps Regularize Singular Correlation Matrices. 2020. ⟨hal-02536278⟩
89 Consultations
130 Téléchargements

Altmetric

Partager

More