Lipschitz continuity of the eigenfunctions on optimal sets for functionals with variable coefficients - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Lipschitz continuity of the eigenfunctions on optimal sets for functionals with variable coefficients

Résumé

This paper is dedicated to the spectral optimization problem min λ1(Ω) + · · · + λ k (Ω) + Λ|Ω| : Ω ⊂ D quasi-open where D ⊂ R d is a bounded open set and 0 < λ1(Ω) ≤ · · · ≤ λ k (Ω) are the first k eigenvalues on Ω of an operator in divergence form with Dirichlet boundary condition and Hölder continuous coefficients. We prove that the first k eigenfunctions on an optimal set for this problem are locally Lipschtiz continuous in D and, as a consequence, that the optimal sets are open sets. We also prove the Lipschitz continuity of vector-valued functions that are almost-minimizers of a two-phase functional with variable coefficients.
Fichier principal
Vignette du fichier
T_Lip_Sum-13-03-20.pdf (360.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02526932 , version 1 (31-03-2020)

Identifiants

  • HAL Id : hal-02526932 , version 1

Citer

Baptiste Trey. Lipschitz continuity of the eigenfunctions on optimal sets for functionals with variable coefficients. 2020. ⟨hal-02526932⟩
48 Consultations
254 Téléchargements

Partager

More