φ-FEM, a finite element method on domains defined by level-sets: the Neumann boundary case - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

φ-FEM, a finite element method on domains defined by level-sets: the Neumann boundary case

Résumé

We extend a fictitious domain-type finite element method, called φ-FEM and introduced in [7], to the case of Neumann boundary conditions. The method is based on a multiplication by the level-set function and does not require a boundary fitted mesh. Unlike other recent fictitious domain-type methods (XFEM, CutFEM), our approach does not need any non-standard numerical integration on cut mesh elements or on the actual boundary. We prove the optimal convergence of φ-FEM and the fact that the discrete problem is well conditioned inependently of the mesh cuts. The numerical experiments confirm the theoretical results.
Fichier principal
Vignette du fichier
main.pdf (826.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02521042 , version 1 (27-03-2020)
hal-02521042 , version 2 (13-11-2020)
hal-02521042 , version 3 (11-01-2022)

Identifiants

  • HAL Id : hal-02521042 , version 1

Citer

Michel Duprez, Vanessa Lleras, Alexei Lozinski. φ-FEM, a finite element method on domains defined by level-sets: the Neumann boundary case. 2020. ⟨hal-02521042v1⟩
672 Consultations
620 Téléchargements

Partager

More