Non-asymptotic control of the cumulative distribution function of L\'evy processes - Archive ouverte HAL
Article Dans Une Revue Advances in Applied Probability Année : 2022

Non-asymptotic control of the cumulative distribution function of L\'evy processes

Résumé

We propose non-asymptotic controls of the cumulative distribution function $P(|X_{t}|\ge \varepsilon)$, for any $t>0$, $\varepsilon>0$ and any L\'evy process $X$ such that its L\'evy density is bounded from above by the density of an $\alpha$-stable type L\'evy process in a neighborhood of the origin. The results presented are non-asymptotic and optimal, they apply to a large class of L\'evy processes.

Dates et versions

hal-02514996 , version 1 (23-03-2020)

Identifiants

Citer

Céline Duval, Ester Mariucci. Non-asymptotic control of the cumulative distribution function of L\'evy processes. Advances in Applied Probability, 2022, 54 (3), pp.913 - 944. ⟨10.1017/apr.2021.55⟩. ⟨hal-02514996⟩
20 Consultations
0 Téléchargements

Altmetric

Partager

More