Cube moves for s-embeddings and α-realizations - Archive ouverte HAL
Article Dans Une Revue Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions Année : 2021

Cube moves for s-embeddings and α-realizations

Résumé

For every $\alpha\in\mathbb{R}^*$, we introduce the class of $\alpha$-embeddings as tilings of a portion of the plane by quadrilaterals such that the side-lengths of each quadrilateral $ABCD$ satisfy $AB^\alpha+CD^\alpha=AD^\alpha+BC^\alpha$. When $\alpha$ is $1$ (resp. $2$) we recover the so-called $s$-embeddings (resp. harmonic embeddings). We study existence and uniqueness properties of a local transformation of $\alpha$-embeddings (and of more general $\alpha$-realizations, where the quadrilaterals may overlap) called the cube move, which consists in flipping three quadrilaterals that meet at a vertex, while staying within the class of $\alpha$-embeddings. The special case $\alpha=1$ (resp. $\alpha=2$) is related to the star-triangle transformation for the Ising model (resp. for resistor networks). In passing, we give a new and simpler formula for the change in coupling constants for the Ising star-triangle transformation.
Fichier principal
Vignette du fichier
Alpha embeddings.pdf (588.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02512557 , version 1 (19-03-2020)
hal-02512557 , version 2 (27-10-2022)

Identifiants

  • HAL Id : hal-02512557 , version 1

Citer

Paul Melotti, Sanjay Ramassamy, Paul Thévenin. Cube moves for s-embeddings and α-realizations. Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, In press. ⟨hal-02512557v1⟩
164 Consultations
100 Téléchargements

Partager

More