Universal Survival Probability for a d -Dimensional Run-and-Tumble Particle - Archive ouverte HAL
Article Dans Une Revue Physical Review Letters Année : 2020

Universal Survival Probability for a d -Dimensional Run-and-Tumble Particle

Résumé

We consider an active run-and-tumble particle (RTP) in $d$ dimensions and compute exactly the probability $S(t)$ that the $x$-component of the position of the RTP does not change sign up to time $t$. When the tumblings occur at a constant rate, we show that $S(t)$ is independent of $d$ for any finite time $t$ (and not just for large $t$), as a consequence of the celebrated Sparre Andersen theorem for discrete-time random walks in one dimension. Moreover, we show that this universal result holds for a much wider class of RTP models in which the speed $v$ of the particle after each tumbling is random, drawn from an arbitrary probability distribution. We further demonstrate, as a consequence, the universality of the record statistics in the RTP problem.
Fichier principal
Vignette du fichier
2001.01492 (472.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02512214 , version 1 (16-12-2023)

Identifiants

Citer

Francesco Mori, Pierre Le Doussal, Satya Majumdar, Gregory Schehr. Universal Survival Probability for a d -Dimensional Run-and-Tumble Particle. Physical Review Letters, 2020, 124 (9), ⟨10.1103/PhysRevLett.124.090603⟩. ⟨hal-02512214⟩
52 Consultations
19 Téléchargements

Altmetric

Partager

More