Families of singular K\"ahler-Einstein metrics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Families of singular K\"ahler-Einstein metrics

Résumé

Refining Yau's and Kolodziej's techniques, we establish very precise uniform a priori estimates for degenerate complex Monge-Amp\`ere equations on compact K\"ahler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary. We apply these estimates to the study of various families of possibly singular K\"ahler varieties endowed with twisted K\"ahler-Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman-Guenancia and Song, as well as on the behavior of singular Ricci flat metrics on (log) Calabi-Yau varieties, generalizing works by Rong-Ruan-Zhang, Gross-Tosatti-Zhang, Collins-Tosatti and Tosatti-Weinkove-Yang.
Fichier principal
Vignette du fichier
FamiliesKE_Hal.pdf (488.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02511898 , version 1 (18-11-2020)
hal-02511898 , version 2 (06-10-2021)

Identifiants

Citer

Eleonora Di Nezza, Vincent Guedj, Henri Guenancia. Families of singular K\"ahler-Einstein metrics. 2020. ⟨hal-02511898v1⟩
88 Consultations
148 Téléchargements

Altmetric

Partager

More