Convergence Analysis of Asymptotic Preserving Schemes for Strongly Magnetized plasmas - Archive ouverte HAL
Article Dans Une Revue Numerische Mathematik Année : 2021

Convergence Analysis of Asymptotic Preserving Schemes for Strongly Magnetized plasmas

Résumé

The present paper is devoted to the convergence analysis of a class of asymptotic preserving particle schemes [Filbet & Rodrigues, SIAM J. Numer. Anal., 54 (2) (2016)] for the Vlasov equation with a strong external magnetic field. In this regime, classical Particle-In-Cell (PIC) methods are subject to quite restrictive stability constraints on the time and space steps, due to the small Larmor radius and plasma frequency. The asymptotic preserving discretization that we are going to study removes such a constraint while capturing the large-scale dynamics, even when the discretization (in time and space) is too coarse to capture fastest scales. Our error bounds are explicit regarding the discretization, stiffness parameter, initial data and time.
Fichier principal
Vignette du fichier
paper.pdf (725.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02510283 , version 1 (17-03-2020)
hal-02510283 , version 2 (18-03-2020)
hal-02510283 , version 3 (19-03-2020)

Identifiants

Citer

Francis Filbet, Luis Miguel Miguel Rodrigues, Hamed Zakerzadeh. Convergence Analysis of Asymptotic Preserving Schemes for Strongly Magnetized plasmas. Numerische Mathematik, 2021, 149 (3), pp.549-593. ⟨10.1007/s00211-021-01248-x⟩. ⟨hal-02510283v3⟩
415 Consultations
164 Téléchargements

Altmetric

Partager

More