Domain Transfer for 3D Pose Estimation from Color Images without Manual Annotations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Domain Transfer for 3D Pose Estimation from Color Images without Manual Annotations

Résumé

We introduce a novel learning method for 3D pose estimation from color images. While acquiring annotations for color images is a difficult task, our approach circumvents this problem by learning a mapping from paired color and depth images captured with an RGB-D camera. We jointly learn the pose from synthetic depth images that are easy to generate, and learn to align these synthetic depth images with the real depth images. We show our approach for the task of 3D hand pose estimation and 3D object pose estimation, both from color images only. Our method achieves performances comparable to state-of-the-art methods on popular benchmark datasets, without requiring any annotations for the color images.
Fichier principal
Vignette du fichier
1810.03707.pdf (7.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02509403 , version 1 (17-03-2020)

Identifiants

Citer

Mahdi Rad, Markus Oberweger, Vincent Lepetit. Domain Transfer for 3D Pose Estimation from Color Images without Manual Annotations. ACCV, 2018, Perth, Australia. ⟨hal-02509403⟩
109 Consultations
86 Téléchargements

Altmetric

Partager

More