Full optical characterization of single nanoparticles using quantitative phase imaging
Résumé
This paper introduces a procedure aimed to quantitatively measure the optical properties of nanoparticles, namely the complex polarizability and the extinction, scattering, and absorption cross sections, simultaneously. The method is based on the processing of intensity and wavefront images of a light beam illuminating the nanoparticle of interest. Intensity and wavefront measurements are carried out using quadriwave lateral shearing interferometry, a quantitative phase imaging technique with high spatial resolution and sensitivity. The method does not require any preknowledge on the particle and involves a single interferogram image acquisition. The full determination of the actual optical properties of nanoparticles is of particular interest in plasmonics and nanophotonics for the active search and characterization of new materials, e.g., aimed to replace noble metals in future applications of nanoplasmonics with less-lossy or refractory materials.
Domaines
Optique [physics.optics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...