Conductance-based Adaptive Exponential integrate-and-fire model - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Neural Computation Année : 2021

Conductance-based Adaptive Exponential integrate-and-fire model

Tomasz Gorski
  • Fonction : Auteur
  • PersonId : 1030310
Alain Destexhe

Résumé

The intrinsic electrophysiological properties of single neurons can be described by a broad spectrum of models, from the most realistic Hodgkin-Huxley type models with numerous detailed mechanisms to the phe-nomenological models. The Adaptive Exponential integrate-and-fire (AdEx) model has emerged as a convenient "middle-ground" model. With a low computational cost, but keeping biophysical interpretation of the parameters it has been extensively used for simulation of large neural networks. However, because of its current-based adaptation, it can generate unre-alistic behaviors. We show the limitations of the AdEx model, and to avoid them, we introduce the Conductance-based Adaptive Exponential integrate-and-fire model (CAdEx). We give an analysis of the dynamic of the CAdEx model and we show the variety of firing patterns that it can produce. We propose the CAdEx model as a richer alternative to perform network simulations with simplified models reproducing neuronal intrinsic properties.
Fichier principal
Vignette du fichier
842823v1.full(1).pdf (5.42 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02507596 , version 1 (13-03-2020)

Identifiants

Citer

Tomasz Gorski, Damien Depannemaecker, Alain Destexhe. Conductance-based Adaptive Exponential integrate-and-fire model. Neural Computation, 2021, 33 (1), pp.41-66. ⟨10.1162/neco_a_01342⟩. ⟨hal-02507596⟩
83 Consultations
382 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More