The localization spectral sequence in the motivic setting - Archive ouverte HAL
Article Dans Une Revue Algebraic and Geometric Topology Année : 2024

The localization spectral sequence in the motivic setting

Résumé

We construct and study a motivic lift of a spectral sequence associated to a stratified scheme, recently discovered by Petersen in the context of mixed Hodge theory and $\ell$-adic Galois representations. The original spectral sequence expresses the compactly supported cohomology of an open stratum in terms of the compactly supported cohomology of the closures of strata and the combinatorics of the poset underlying the stratification. Some of its special cases are classical tools in the study of arrangements of subvarieties and configuration spaces. Our motivic lift lives in the triangulated category of \'{e}tale motives and takes the shape of a Postnikov system. We describe its connecting morphisms and study some of its functoriality properties.

Dates et versions

hal-02503516 , version 1 (10-03-2020)

Identifiants

Citer

Clément Dupont, Daniel Juteau. The localization spectral sequence in the motivic setting. Algebraic and Geometric Topology, 2024, 24 (3), pp.1431-1466. ⟨10.2140/agt.2024.24.1431⟩. ⟨hal-02503516⟩

Relations

71 Consultations
0 Téléchargements

Altmetric

Partager

More