On the balanceability of some graph classes
Résumé
Given a graph $G$, a 2-coloring of the edges of $K_n$ is said to contain a \emph{balanced copy} of $G$ if we can find a copy of $G$ such that half of its edges are in each color class. If, for every sufficiently large $n$, there exists an integer $k$ such that every 2-coloring of $K_n$ with more than $k$ edges in each color class contains a balanced copy of $G$, then we say that $G$ is \emph{balanceable}.
Balanceability was introduced by Caro, Hansberg and Montejano, who also gave a structural characterization of balanceable graphs.
In this paper, we extend the study of balanceability by finding new sufficient conditions for a graph to be balanceable or not. We use those conditions to fully characterize the balanceability of graph classes such as rectangular and triangular grids, as well as a special class of circulant graphs.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...