Provenance of classical Hamiltonian time crystals - Archive ouverte HAL Access content directly
Journal Articles Journal of High Energy Physics Year : 2020

Provenance of classical Hamiltonian time crystals

Anton Alekseev
  • Function : Author
Jin Dai
  • Function : Author

Abstract

Classical Hamiltonian systems with conserved charges and those with constraints often describe dynamics on a pre-symplectic manifold. Here we show that a pre-symplectic manifold is also the proper stage to describe autonomous energy conserving Hamiltonian time crystals. We explain how the occurrence of a time crystal relates to the wider concept of spontaneously broken symmetries; in the case of a time crystal, the symmetry breaking takes place in a dynamical context. We then analyze in detail two examples of timecrystalline Hamiltonian dynamics. The first example is a piecewise linear closed string, with dynamics determined by a Lie-Poisson bracket and Hamiltonian that relates to membrane stability. We explain how the Lie-Poisson brackets descents to a time-crystalline pre-symplectic bracket, and we show that the Hamiltonian dynamics supports two phases; in one phase we have a time crystal and in the other phase time crystals are absent. The second example is a discrete one dimensional model of a Hamiltonian chain. It is obtained by a reduction from the Q-ball Lagrangian that describes time dependent nontopological solitons. We show that a time crystal appears as a minimum energy domain wall configuration, along the chain.

Dates and versions

hal-02497870 , version 1 (03-03-2020)

Identifiers

Cite

Anton Alekseev, Jin Dai, Antti J. Niemi. Provenance of classical Hamiltonian time crystals. Journal of High Energy Physics, 2020, 08, pp.035. ⟨10.1007/JHEP08(2020)035⟩. ⟨hal-02497870⟩
93 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More