Optimal regularity for all time for entropy solutions of conservation laws in $BV^s$ - Archive ouverte HAL
Article Dans Une Revue Nonlinear Differential Equations and Applications Année : 2020

Optimal regularity for all time for entropy solutions of conservation laws in $BV^s$

Résumé

This paper deals with the optimal regularity for entropy solutions of conservation laws. For this purpose, we use two key ingredients: (a) fine structure of entropy solutions and (b) fractional BV spaces. We show that optimality of the regularizing effect for the initial value problem from $L^\infty$ to fractional Sobolev space and fractional BV spaces is valid for all time. Previously, such optimality was proven only for a finite time, before the nonlinear interaction of waves. Here for some well-chosen examples, the sharp regularity is obtained after the interaction of waves. Moreover , we prove sharp smoothing in $BV^s$ for a convex scalar conservation law with a linear source term. Next, we provide an upper bound of the maximal smoothing effect for nonlinear scalar multi-dimensional conservation laws and some hyperbolic systems in one or multi-dimension.
Fichier principal
Vignette du fichier
BVs-all-time-HAL.pdf (332.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02495036 , version 1 (29-02-2020)
hal-02495036 , version 2 (13-08-2020)

Identifiants

Citer

Shyam Ghoshal, Billel Guelmame, Animesh Jana, Stéphane Junca. Optimal regularity for all time for entropy solutions of conservation laws in $BV^s$. Nonlinear Differential Equations and Applications, 2020, 27 (5), ⟨10.1007/s00030-020-00649-5⟩. ⟨hal-02495036v1⟩
425 Consultations
213 Téléchargements

Altmetric

Partager

More