Branching geodesics in sub-Riemannian geometry - Archive ouverte HAL
Article Dans Une Revue Geometric And Functional Analysis Année : 2020

Branching geodesics in sub-Riemannian geometry

Thomas Mietton
  • Fonction : Auteur
  • PersonId : 1065549
Luca Rizzi

Résumé

In this note, we show that sub-Riemannian manifolds can contain branching normal minimizing geodesics. This phenomenon occurs if and only if a normal geodesic has a discontinuity in its rank at a non-zero time, which in particular for a strictly normal geodesic means that it contains a non-trivial abnormal subsegment. The simplest example is obtained by gluing the three-dimensional Martinet flat structure with the Heisenberg group in a suitable way. We then use this example to construct more general types of branching.
Fichier principal
Vignette du fichier
branching-v8.pdf (457.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02493682 , version 1 (28-02-2020)
hal-02493682 , version 2 (07-06-2020)

Identifiants

Citer

Thomas Mietton, Luca Rizzi. Branching geodesics in sub-Riemannian geometry. Geometric And Functional Analysis, 2020, 30, pp.1139 - 1151. ⟨10.1007/s00039-020-00539-z⟩. ⟨hal-02493682v2⟩
107 Consultations
229 Téléchargements

Altmetric

Partager

More