Estimation and segmentation in non-Gaussian POLSAR clutter by SIRV stochastic processes - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Estimation and segmentation in non-Gaussian POLSAR clutter by SIRV stochastic processes

Gabriel Vasile
Frédéric Pascal

Résumé

In the context of non-Gaussian polarimetric clutter models, this paper presents an application of the recent advances in the field of Spherically Invariant Random Vectors (SIRV) modelling for coherency matrix estimation in heterogeneous clutter. The complete description of the POLSAR data set is achieved by estimating the span and the normalized co-herency independently. The normalized coherency describes the polarimetric diversity, while the span indicates the total received power. Based on the SIRV model, a new maximum likelihood distance measure is introduced for unsupervised POLSAR segmentation. The proposed method is tested with airborne POLSAR images provided by the RAMSES system.
Fichier principal
Vignette du fichier
1379_vasile.pdf (4.19 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02493508 , version 1 (27-02-2020)

Identifiants

Citer

Gabriel Vasile, Jean-Philippe Ovarlez, Frédéric Pascal. Estimation and segmentation in non-Gaussian POLSAR clutter by SIRV stochastic processes. IGARSS 2009 - IEEE International Geoscience and Remote Sensing Symposium, Jul 2009, Le Cap, South Africa. pp.III-963-III-966, ⟨10.1109/IGARSS.2009.5417935⟩. ⟨hal-02493508⟩
230 Consultations
112 Téléchargements

Altmetric

Partager

More