Generalization of Rellich-Kondrachov theorem and trace compacteness in the framework of irregular and fractal boundaries - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Generalization of Rellich-Kondrachov theorem and trace compacteness in the framework of irregular and fractal boundaries

Résumé

We present a survey of recent results of the functional analysis allowing to solve PDEs in a large class of domains with irregular boundaries. We extend the previously introduced concept of admissible domains with a d-set boundary on the domains with the boundaries on which the measure is not necessarily Ahlfors regular d-measure. This gives a generalization of Rellich-Kondrachov theorem and the compactness of the trace operator, allowing to obtain, as for a regular classical case the unicity/existence of weak solutions of Poisson boundary valued problem with the Robin boundary condition and to obtain the usual properties of the associated spectral problem.
Fichier principal
Vignette du fichier
Preprint.pdf (271.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02489325 , version 1 (24-02-2020)
hal-02489325 , version 2 (02-06-2020)

Identifiants

Citer

Anna Rozanova-Pierrat. Generalization of Rellich-Kondrachov theorem and trace compacteness in the framework of irregular and fractal boundaries. 2020. ⟨hal-02489325v1⟩
140 Consultations
2162 Téléchargements

Altmetric

Partager

More