The Impact of Imbalanced training Data on Local matching learning of ontologie - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

The Impact of Imbalanced training Data on Local matching learning of ontologie

Résumé

Matching learning corresponds to the combination of ontology matching and machine learning techniques. This strategy has gained increasing attention in recent years. However, state-of-the-art approaches implementing matching learning strategies are not well-tailored to deal with imbalanced training sets. In this paper, we address the problem of the imbalanced training sets and their impacts on the performance of the matching learning in the context of aligning biomedical ontologies. Our approach is applied to local matching learning, which is a technique used to divide a large ontology matching task into a set of distinct local sub-matching tasks. A local matching task is based on a local classifier built using its balanced local training set. Thus, local classifiers discover the alignment of the local sub-matching tasks. To validate our approach, we propose an experimental study to analyze the impact of applying conventional resampling techniques on the quality of the local matching learning.
Fichier principal
Vignette du fichier
laadhar_24845.pdf (302.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02486113 , version 1 (20-02-2020)

Identifiants

  • HAL Id : hal-02486113 , version 1

Citer

Amir Laadhar, Faiza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, et al.. The Impact of Imbalanced training Data on Local matching learning of ontologie. 22nd International Conference on Business Information Systems (BIS 2019), Jun 2019, Seville, Spain. pp.162-175. ⟨hal-02486113⟩
75 Consultations
70 Téléchargements

Partager

More