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Abstract. Matching learning corresponds to the combination of ontol-
ogy matching and machine learning techniques. This strategy has gained
increasing attention in recent years. However, state-of-the-art approaches
implementing matching learning strategies are not well-tailored to deal
with imbalanced training sets. In this paper, we address the problem of
the imbalanced training sets and their impacts on the performance of
the matching learning in the context of aligning biomedical ontologies.
Our approach is applied to local matching learning, which is a technique
used to divide a large ontology matching task into a set of distinct local
sub-matching tasks. A local matching task is based on a local classifier
built using its balanced local training set. Thus, local classifiers discover
the alignment of the local sub-matching tasks. To validate our approach,
we propose an experimental study to analyze the impact of applying
conventional resampling techniques on the quality of the local matching
learning.

Keywords: Imbalanced Training Data · Machine Learning · Ontology
Matching · Semantic Web

1 Introduction
Biomedical ontologies such as SNOMED CT, the National Cancer Institute The-
saurus (NCI), and the Foundational Model of Anatomy (FMA) are used in the
biomedical engineering systems [23]. These ontologies are developed based on
different modeling views and vocabularies. The integration of these knowledge
graphs requires efficient biomedical ontology matching systems [22, 7]. The map-
ping between heterogeneous ontologies enables data interoperability.

Ontology mapping becomes a challenging and time-consuming task due to
the size and the heterogeneity of biomedical ontologies. In this domain, Faria
et al. [8] identified different challenges such as handling large ontologies or ex-
ploiting background knowledge. In addition to these problems, we highlight the
importance of ensuring good matching quality while aligning large ontologies.
Among the cited strategies to deal with large ontologies, we find search-space
reduction techniques encompassing two sub-strategies: partitioning and prun-
ing [7]. The partitioning approach divides a large matching task into a set of
smaller matching tasks, called partitions or blocks [23]. Each partition focuses



on a specific context of the input ontologies. The ontology alignment process
consists of aligning similar partition-pairs. The partitioning process aims to de-
crease the matching complexity of a large matching task. A line of work performs
the partitioning process of pairwise ontologies to align the set of identified simi-
lar partitions (e.g., [9, 1, 26, 4, 11]). The state-of-the-art partitioning approaches
use global matching settings (e.g., matchers choice, thresholds and weights) for
all extracted partition-pairs [23]. Therefore, they do not employ any local tun-
ing applied to each partition-pair to maximize the matching quality. Despite the
existing work applying global matching process, we perform a local matching
process over each extracted partition-pair. The local matching resolved by ma-
chine learning techniques, known as “local matching learning”, requires a set of
local training sets. Imbalanced training sets are one of the main issues occur-
ring while dealing with ontology matching learning. Imbalanced data typically
refers to a classification problem where the number of observations per class is
not equally distributed [18]. Current matching learning work does not consider
the resampling process to resolve the problem of imbalanced matching learning
training data. Nonetheless, resampling is essential to deliver better matching
learning accuracy.

In this paper, the main novelty is studying the impact of the imbalanced
training data issue in the case of aligning large biomedical ontologies. Unlike
state-of-the-art approaches, we automatically derive a local training set for each
local matching learning classifier based on external biomedical knowledge re-
sources. We automatically generate a local training set for each classifier without
the use of any gold standard. Furthermore, we employ existing resampling meth-
ods to balance local training sets of local classifiers, and to align each partition-
pair. Then, we evaluate the matching accuracy after applying different resam-
pling techniques on the local matching tasks. To the best of our knowledge, there
is a lack of works that automatically generate and resample matching learning
training data. In sum, the contributions of this paper are the following:

– Local matching learning of biomedical ontologies;
– Automatically generating labeled local training sets, which are inferred from

external biomedical knowledge bases to build local-based classifiers;
– Comparative study of the resampling methods to balance the generated local

training sets.

The remainder of this paper is organized as follows: the next section presents
the related work. Section 3 introduces preliminaries for the local matching ap-
proach and the local training set. Section 4 presents an overview of the proposed
local matching architecture. In Section 5, we present our method for local match-
ing learning. In Section 6, we perform a comparative study of the state-of-the-art
resampling techniques in order to resample imbalanced local training sets. Fi-
nally, Section 7 concludes this paper and gives some perspectives.

2 Related Work

Faria et al. [8] identified the different challenges to align large biomedical on-
tologies. Ensuring good quality alignments while aligning these ontologies is



challenging. To cope with these issues, we propose to employ matching learning
techniques in order to fully automate the ontology matching process. There-
fore, matching learning automates the alignment process while ensuring quality
alignment independently from the matching context. In this section, we review
the state-of-the-art matching learning strategies as well as the resampling tech-
niques. Resampling methods could be applied to balance imbalanced training
sets.

2.1 Ontology Matching Learning

There has been some relevant work dealing with supervised matching learn-
ing [10, 19, 20, 6]. Machine learning approaches for ontology alignment usually
follow two phases [7]:

1. In the training phase, the machine learning algorithm learns the matching
settings from a training set. This training set is usually created from the
reference alignments of the same matching task.

2. In the classification phase, the generated classifier is applied over the input
ontologies to classify the candidate alignments of the input ontologies.

Eckert et al. [6] built a meta-learner strategy to combine multiple learners.
Malform-SVM [10] constructed a matching learning classifier from the reference
alignments through a set of element level and structural level features. Nezhadi
et al. [19] presented a machine learning approach to aggregate different types
of string similarity measures. The latter approach is evaluated through a rel-
atively small bibliographic matching track provided by the OAEI benchmark.
Yam++ [20] defined a decision tree classifier based on a training set with dif-
ferent similarity measures. The decision tree classifier is built from the reference
alignments and evaluated through the matching tasks. Nkisi-Orji et al. [21] pro-
posed a matching learning classifier based on 23 features. Wang et al. [16], feed
a neural network classifier with 32 features covering commonly used measures in
the literature. A global classifier is built based on all the 32 features. Both ap-
proaches [21, 16] do not mention if the training set is balanced or not. Moreover,
the training set is generated from the reference alignments.

Existing matching learning approaches build their machine learning classifiers
from the reference alignments or derive it manually from a particular matching
task [7]. We automatically generate a local training set for each sub-matching
task. We do not use any reference alignments or user interactions to build the
local training sets. Each local machine learning classifier is based on its local
training set, which provides adequate matching settings for each sub-matching
context.

2.2 Training Set Resampling

Classification problems often suffer from data imbalance across classes. This
is the case when the size of instances from one class is significantly higher or
lower relative to the other classes. A small difference often does not matter [18].
However, if there is a modest class imbalance in training data like 4:1, it can



cause misleading classification accuracy. Imbalanced data refers to classification
problems where we have unequal instances for different classes.

Most of machine learning classification algorithms are sensitive to imbalanced
training data. An imbalanced training data will bias the prediction classifier
towards the more common class. This happens because machine learning algo-
rithms are usually designed to improve accuracy by reducing the error. Thus,
they do not take into account the class distribution of classes. Different methods
have been proposed in the state-of-the-art for handling the data imbalance [5].
The common approaches [3] to generate a balanced dataset from an imbalanced
one are undersampling, oversampling, and their combination:

– Undersampling approach balances the dataset by reducing the size of the
abundant class by keeping all samples in the rare class and randomly select-
ing an equal number of samples in the abundant class;

– Oversampling approach is used when the quantity of data is insufficient. It
tries to balance dataset by increasing the size of rare samples. Rather than
removing of abundant samples, new rare samples are generated;

– Performing a combination of oversampling and undersampling can yield bet-
ter results than either in isolation.

Most of the state-of-the-art matching learning approaches neglect the prob-
lem of the imbalanced dataset. Existing work does not give any importance to
resampling. However, the resampling method can strongly affect the obtained ac-
curacy by the matching learning strategy. In this paper, we propose to resample
training data in the context of local matching learning of biomedical ontologies.
We apply the state-of-the-art resampling techniques on the local training data.
Then, we study the impact of the applied resampling techniques on the local
matching accuracy.

3 Preliminaries

In this section, we briefly present the fundamental definitions used in our work.

Definition 1 (Ontology partition).
An ontology partition pi,k of an ontology Oi is a sub-ontology denoted by pi,k =
(Vi,k,Ei,k), such as :

– Vi,k =
{

ei,k,1,...,ei,k,mk

}

, Vi,k ⊆ Vi. is a finite set of classes of the ontology
partition,

– Ei,k = {(ei,k,x,ei,k,y) | (ei,k,x,ei,k,y) ∈ Vi,k ∃ (ei,k,x,ei,k,y) ∈ Ei,k }, Ei,k ⊆
Ei. is a finite set of edges, where an edge encodes the relationship between
two classes into an ontology partition

Definition 2 (Set of ontology partitions).
An ontology Oi can be divided into a set of ontology partitions Pi ={pi,1,..,pi,si}.

– ∀k ∈ [1..si],Vi,k 6= ∅;
–

⋃si
k=1

Vi,k = Vi;
– ∀ k ∈ [1..si], ∀ l ∈ [1..si], k 6= l, Vi,k ∩ Vi,l = ∅.



Definition 3 (Local-based training Set).
For each local matching lmij,q of LMij, we automatically generate a local train-
ing set denoted tsij,q. A local training set tsij,q for a local matching task lmij,q of
LMij is denoted by tsij,q = {fi1 , ..., fniq

}. Each local training set tsij,q contains
a set of features associated with a prediction class attribute (match/not match).
We denote tsij,q = {fijq,1,..., fijq,r, cijq}. Since we are dealing with a binary
classification task, cijq ∈ {0,1}. A set of local machine learning classifiers is gen-
erated from a set of local training sets T sij, denoted T sij,q = {tsij,1,...,tsij,q}.
Hypothesis 1
For a local matching LMij between two ontologies Oi and Oj associated with a
set of imbalanced local training sets T sij = {tsij,1,...,tsij,q}, performing the ade-
quate resampling technique improves the accuracy of the local matching learning.

4 Local Matching Learning Architecture Overview
In Figure 1, we depict an architectural overview of the local matching workflow.
This architecture follows three modules: (i) ontology indexing and partitioning,
(ii) local matching learning and (iii) alignment evaluation. We participated in
the Ontology Alignment Evaluation Initiative (OAEI)3 of 2018 using this archi-
tecture [14]. In the following, we describe the different modules of our proposal.

Fig. 1. Local matching architecture overview

Input Ontologies Indexing and Partitioning The input ontologies indexing
is composed of two sequential steps: input ontologies pre-processing, and lexical
and structural indexing. In the first step, we pre-process the lexical annotations.
Thus, we apply the Porter stemming [15] and a stop word removal process over
the extracted lexical annotations. In the second step, those lexical annotations
are indexed. Moreover, we use structural indexing to store all the relationships
between entities.

We then perform the partitioning of the input ontologies based on the ap-
proach of [13]. This partitioning approach is based on the Hierarchical Ag-
glomerative Clustering (HAC) [17] to produce a set of partition-pairs with a
sufficient coverage ratio and without producing any isolated partitions. Parti-
tions with only one entity are considered as isolated. This partitioning process
follows these steps:

3 http://oaei.ontologymatching.org/2018/



1. Ontology partitioning processing: the HAC algorithm generates a list of
structural similarity scores between all the entities of each input ontology.
The structural similarity measure computes the structural relatedness be-
tween every pair of entities of one ontology.

2. Dendrogram construction: the HAC approach receives as an input the list
of structural similarities of every input ontology. The HAC generates a den-
drogram for every ontology. A dendrogram represents the structural repre-
sentation of an input ontology.

3. Dendrogram cut: we cut the two generated dendrograms. A single cut of a
dendrogram can result in a set of large partitions. To cope with this issue,
we perform an automated multi-cut strategy of every resulted dendrogram.
The multi-cut strategy results in a set of partitions for each ontology.

4. Finding similar partition-pairs: we find the set of similar partition-pairs be-
tween the two ontologies. These partition-pairs represent the set of local
matching tasks, which will be employed by the next module.

The employed partitioning approach to generate local matching tasks is ex-
plained in depth in our previous research work [13].

Local Matching Learning The local matching approach is based on gen-
erating a local classifier for each sub-matching task. The local classifiers are
generated based on a set of local training sets composed of element and struc-
tural level features. Each local classifier is based on adequate features to align its
sub-matching task. These features are automatically selected based on a feature
selection. The local matching approach is composed of the following steps:

1. Generating Initial Local Training Set: Initial local training set are generated
for each local matching task. These local training sets are not balanced.

2. Resampling of the Local Training Data: During this step, local training sets
are balanced using conventional resampling techniques. Resampling aims to
balance local training sets for better classification accuracy.

3. Wrapper Local Feature Selection: We apply wrapper feature selection over
each resampled local training set. This local feature selection aims to choose
the adequate features for each local matching task.

4. Local Classification: Local classification aims to classify the candidate cor-
respondences of a local matching task to be aligned or not. This process is
based on a set of local classifiers generated from the set of local training sets.

We will provide an in-depth description of these steps in the next section.

Output Alignment Evaluation The generated output correspondences for
every local matching task lmij,q are unified to generate the final alignment file
for the whole ontology matching task. The alignment file is compared to the
reference alignment to evaluate the overall local matching LMij accuracy.

5 Local Matching Learning

In this section, we present the different steps of the local matching learning
module depicted in the architecture of Figure 1.



Generating Initial Local Training Set: Each local matching task has its
own specific context. Therefore, a local matching task should be aligned based
on its adequate matching settings, such as the weight of each matcher and its
threshold. To cope with this issue, a local based classifier should be built for each
local matching task. Therefore, we automatically construct a supervised training
set tsij,q for each local matching task lmij,q. These training sets serve as the input
for each local classifier. Labeled data for the class attribute cijq are usually hard
to acquire. Existing work construct the labeled data either from the reference
alignments or by creating it manually [20]. However, the reference alignments
commonly do not exist. We automatically generate the local training sets without
any user manual involvement or any reference alignments. We derive the positive
mappings samples (minority class) of the class attribute cijq by combining the
results of two methods: cross-searching and cross-referencing. This combination
allows the enrichment of the local training sets in order to cover a wide range of
biomedical ontologies.

For a given local matching lmij,q, we generate:

– Positive samples psij,q = {(ei, q, x,ej,q,y)}, the total number of these positive
samples is N = |psij,q|.

– Negative samples nsij,q = {(Vi,q×Vj,q)\psij,q}. Therefore, the total number
of negative samples is M = N (N -1).

In the following, we present the cross-searching and the cross-referencing
methods:

Cross-searching : Cross-searching employs external biomedical knowledge sources
as a mediator between local matching tasks in order to extract bridge alignments.
A bridge alignment is extracted if a similar annotation is detected between an en-
tity of the bridge ontology and two entities of a local matching task. We consider
bridge alignments as the positive samples. For example, in Figure 2,we extracted
the following positive samples PSij,q = {(e1Pq,e1Pr), (e8Pq,e2Pr), (e5Pq,e3Pr)},
with N= 3. These labeled classes are generated by cross-searching the two parti-
tions and an external biomedical knowledge base. Therefore, we deduce that the
number of negative samples M = N (N -1) = 6 for the partition-pair Pq and Pr

respectively from Oi and Oj . Cross-referencing : we employ Uberon as an exter-
nal biomedical knowledge source in order to derive positive samples for each local
training set. Uberon is an integrated cross-species ontology covering anatomical
structures and includes relationships to taxon-specific anatomical ontologies. In-
deed, we explored the property ”hasDbXref”, which is mentioned in almost every
class of Uberon. This property references the classes URI of external biomedical
ontologies. We align every two entities of a given local matching task in case if
one of their entities are both referenced in a single entity of Uberon. For example,
the UBERON ontology includes references to different biomedical ontologies (via
annotation property “hasDbXRef ”). For instance, the class UBERON 0001275
(“pubis”) of Uberon references the FMA class 16595 (“pubis”) and NCI class
C33423 (“pubic bone”). Therefore, the later entities construct a positive sample
of a local training set [8].



Fig. 2. Local training set extraction

Resampling of the Local Training Data: The training set is not balanced
since the number of the negative samplesM is higher than the number of positive
samples N . Therefore, we initially undersample each local training set tsij,q by a
heuristic method which consists of removing all the negative samples (majority
class) having at least one element level feature equal to zero. The result of this
initial treatment is not enough to balance the local training data, due to the
high number of negative samples M (majority class) compared to the number
of positive samples N (minority class). Hence, an additional sampling method
is required to result in a balanced training set, we employ the state-of-the-art
resampling methods to perform the undersampling of the majority class M ,
oversampling the minority class N or combining both of the later technique. In
section 5, we conduct a comparative study of applying resampling methods over
imbalanced training data. Therefore, we obtain a balanced training set (N=M).
We Denote by r = ‖N‖/‖M‖ the ratio of the size of the minority class to the
majority class.

The output of this step is a balanced local training set tsij,q for each local
matching task lmij,q. For instance, if a local matching process LMij is composed
of three local matching tasks: lmij,1 lmij,2 and lmij,3, we respectively result in
three local training sets tsij,1 tsij,2 tsij,3.

Wrapper Local Feature Selection The local matching LMij approach splits
a large ontology matching problem into a set of smaller local matching tasks
lmij,q. Each local matching task focuses on a specific sub-topic of interest. There-
fore, it should be aligned based on its suitable features. We employ wrapper
feature selection approaches in order to determine the suitable features for each
local matching task lmij,q among 23 structural-level and element-level features.
Element level features consider intrinsic features of entities such as their tex-
tual annotations. Element level features refer to well-known similarity measure
matchers, which can be classified into four groups: edit-distance, character-based,
term-based and subsequence-based [13]. Structure level features consider the on-
tological neighborhood of entities in order to determine their similarity. We pre-
viously introduced all these features in a previous research work [13]. Feature



selection is performed over each local training set tsij,q in order to build local
classifiers. The later identifies the local alignments of a local matching task lmij,q.
For example for a given local training sets: tsij,1, tsij,2 and tsij,3, we separately
perform the feature selection over these three local training sets.

Local Classification Candidate correspondences of each local matching task
lmij,q are determined through performing the Cartesian product between the
entities Vi,q and Vj,q of lmij,q. A local classifier classifies each candidate corre-
spondence into a true or a false alignment. We build local classifiers using the
Random Forest algorithm. We have selected Random Forest after comparing the
efficiency of several machine learning algorithms for ontology matching learning
[13].

6 Evaluation and Comparative Study

In this section, we evaluate the Hypothesis 1 ”Resampling improves the accu-
racy of the local matching learning” by conducting a set of experiments. All
experiments have been implemented in Java (weka library for classification) and
Python (imblearn library for training sets resampling) on a MacOs operating
system with 2.8 GHz Intel I7-7700HQ (4 cores) and 16 GB of internal memory.
In the following subsections, we compare the accuracy of the commonly employed
resampling methods (undersampling, oversampling and their combination) then
we discuss the results. Our experiments are performed based on the dataset of
the Evaluation Initiative of 2018, in particular, the ontology matching track of
Anatomy.

6.1 Impact of Undersampling on Local Training Data

We evaluate four different methods of the widely employed undersampling method
in order to balance the class distribution of the local training data. These meth-
ods are described as follows:

– Random undersampling is a non-heuristic method that aims to balance
the class distribution through the random elimination of instances belonging
to the majority class.

– Tomek links [24] removes unwanted overlap between classes where majority
class links are removed until all minimally distanced nearest neighbor pairs
are on the same class.

– One-sided selection (OSS) [12] aims at creating a training dataset com-
posed only by ”safe instances”. This technique removes instances that are
noisy, redundant, or near to the decision border. Similar to the other under-
sampling techniques, OSS removes only instances from the majority class.

– Edited Nearest Neighbors [25] method removes the instances of the ma-
jority class with prediction made by the K-means method is different from
the majority class. Therefore, if an instance has more neighbors of a different
class, this instance will be removed.

In Table 1, we depict the results of each undersampling method in terms of
the obtained accuracy. The Edited Nearest Neighbors resulted in the highest
F-Measure of 85.3%.



Table 1: Local Matching accuracy for each undersampling method
Undersampling method Precision Recall F-Measure

Random Undersampling 65.9% 86.4% 74.8%
Tomek links 93.7% 77.4% 84.8%

One-sided selection 93.7% 77.1% 84.6%
Edited Nearest Neighbors 93.4% 78.4% 85.3%

6.2 Impact of Oversampling on Local Training Data

In this section, we perform the oversampling of the minority class instead of per-
forming the undersampling of the majority class. There are several oversampling
methods used in typical classification problems. The most common techniques
are SMOTE [2] (Synthetic Minority Oversampling Technique) and random over-
sampling method:

– SMOTE oversamples the minority class by taking each positive instance and
generating synthetic instances along a line segments joining their k nearest
neighbors

– Random oversampling is a non-heuristic method that aims to balance
class distribution through the random elimination of instances belonging to
the minority class.

In the following Table 2, we depict the results of the local matching LMij after
performing the oversampling of the local training sets for each local matching
task lmij,q of LMij . We show below the results of applying SMOTE with k =
5 as the number of nearest neighbors in order to achieve a ratio r = 1. We also
perform the random oversampling with a ratio r= 1We deduce from Table 2 that
SMOTE outperforms the random oversampling method in terms of precision and
F-Measure. We argue this result due to the randomly generated instances by the
random oversampling method.

Table 2: Local Matching accuracy for each oversampling method
Oversampling method Precision Recall F-Measure

Random oversampling 70.8% 82.8% 76.3%
SMOTE 86.7% 78.8% 82.6%

6.3 Combination of oversampling and undersampling on Local
Training Data

It is possible to combine oversampling and undersampling techniques into a hy-
brid strategy. Common state-of-the-art methods [18, 3] include the combination
of SMOTE and Tomek links, SMOTE and Edited Nearest Neighbors (ENN) or
SMOTE and Random Undersampling. SMOTE is employed for the oversampling
with a ratio r= 0.5 and each of the latter techniques is employed for undersam-
pling. We evaluate these three methods by resampling the local training sets,
then we perform the local matching process based on the generated local classi-
fiers. In the following Table 3, we depict the results of each combination method.
We deduce that the combination of SMOTE and Tomek Link results in the best
accuracy in terms of F-Measure and Precision. The combination of SMOTE and
Random Under sampling results in the best recall value due to the random na-
ture of this approach. Therefore, it returns the highest number of alignments
with the lowest precision compared to the other combination methods.



Table 3: Combining Oversampling and Undersampling techniques
Hybrid method Precision Recall F-Measure

SMOTE + Random Undersampling 87.8% 81.3% 84.4%
SMOTE + ENN 88.4% 80.5% 84.3%

SMOTE + Tomek Link 92.0% 79.0% 85.0%

6.4 Discussion

According to the achieved results, we highlight the following points:

– The random undersampling and oversampling methods are unstable. A more
deep study on the convergence of these methods can be investigated to argue
their usage.

– We can observe in table 3 that combining SMOTE with undersampling meth-
ods decreases the matching accuracy.

We deduce that for the matching learning context, undersampling meth-
ods outperform the other resampling methods. We argue this result since the
undersampling method removes redundant instances rather than creating new
synthetic instances like the oversampling of the minority class. We conclude that
the undersampling using ENN [25] yields to the best Precision and F-Measure.
ENN removes instances of the majority class with prediction made by K-means
method which are different from the majority class. We mention that we com-
bined the use of cross-searching and cross-referencing with external resources in
order to construct local training sets. The impact of each method on the resulted
matching quality can be investigated. We tend to validate the hypothesis that
the quality could depend on the use of methods used in the construction of the
training data sets.

7 Conclusion

Ontology matching based on machine learning techniques has been an active
research topic during recent years. In this paper, we focus on the problem of
imbalanced learning training sets in the case of Local Matching Learning. To
the best of our knowledge, there is a lack of works that automatically generate
and resample local matching learning training sets. To perform the resampling
of the local training sets, we evaluate the common state-of-the-art resampling
techniques in order to improve the classification performance by employing the
best technique. Our comparative study shows that the undersampling methods
outperform the oversampling methods and their combination.

In future work, we tend to automate the choice of the resampling method
for each local matching task. We will also evaluate the impact of the external
knowledge resource on the global quality of our output alignments. Finally, we
plan to experiment on different domain-based ontologies.

References

1. Algergawy, Alsayed, et al. ”Seecont: A new seeding-based clustering approach for
ontology matching.” ADBIS. Springer, Cham (2015)

2. Chawla, Nitesh V., et al. ”SMOTE: synthetic minority over-sampling technique.”
Journal of artificial intelligence research 16 (2002)



3. Chawla, Nitesh V. ”Data mining for imbalanced datasets: An overview.” Data min-
ing and knowledge discovery handbook. Springer, Boston, MA, (2009)

4. Chiatti, Agnese, et al. ”Reducing the search space in ontology alignment using
clustering techniques and topic identification.” ICKC, ACM, (2015)

5. de Souto et al. ”An empirical analysis of under-sampling techniques to balance a
protein structural class dataset.” ICNIP, Springer, Berlin, Heidelberg, (2006)

6. Eckert, Kai, Christian M, and Heiner S. ”Improving ontology matching using meta-
level learning.” European Semantic Web Conference. Springer (2009)

7. Euzenat, J., Shvaiko, P. ”Ontology matching, vol. 1.” (2007)
8. Faria, D., Pesquita, C., Mott, I., Martins, C., Couto, F. M., Cruz, I. F. (2018).

Tackling the challenges of matching biomedical ontologies. JBS, 9(1), 4.
9. Hu, Wei, Yuzhong Qu, and Gong Cheng. ”Matching large ontologies: A divide-and-

conquer approach.” DKE V 67.1 (2008)
10. Ichise, Ryutaro. ”Machine learning approach for ontology mapping using multiple

concept similarity measures.” 7th IEEE/ACIS, (2008).
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