Universality Problem for Unambiguous VASS
Résumé
We study languages of unambiguous VASS, that is, Vector Addition Systems with States, whose transitions read letters from a finite alphabet, and whose acceptance condition is defined by a set of final states (i.e., the coverability language). We show that the problem of universality for unambiguous VASS is ExpSpace-complete, in sheer contrast to Ackermann-completeness for arbitrary VASS, even in dimension 1. When the dimension d is fixed, the universality problem is PSpace-complete if d ≥ 2, and coNP-hard for 1-dimensional VASS (also known as One Counter Nets).
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...