Self-similar shrinkers of the one-dimensional Landau-Lifshitz-Gilbert equation - Archive ouverte HAL
Article Dans Une Revue Journal of Evolution Equations Année : 2020

Self-similar shrinkers of the one-dimensional Landau-Lifshitz-Gilbert equation

Résumé

The main purpose of this paper is the analytical study of self-shrinker solutions of the one-dimensional Landau-Lifshitz-Gilbert equation (LLG), a model describing the dynamics for the spin in ferromagnetic materials. We show that there is a unique smooth family of backward self-similar solutions to the LLG equation, up to symmetries, and we establish their asymptotics. Moreover, we obtain that in the presence of damping, the trajectories of the self-similar profiles converge to great circles on the sphere, at an exponential rate. In particular, the results presented in this paper provide examples of blow-up in finite time, where the singularity develops due to rapid oscillations forming limit circles.
Fichier principal
Vignette du fichier
Shrinkers-Final.pdf (3.8 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02480999 , version 1 (17-02-2020)
hal-02480999 , version 2 (21-05-2020)

Identifiants

Citer

Susana Gutiérrez, André de Laire. Self-similar shrinkers of the one-dimensional Landau-Lifshitz-Gilbert equation. Journal of Evolution Equations, 2020, ⟨10.1007/s00028-020-00589-8⟩. ⟨hal-02480999v2⟩
134 Consultations
103 Téléchargements

Altmetric

Partager

More