From Riemannian trichromacy to quantum color opponency via hyperbolicity - Archive ouverte HAL
Pré-Publication, Document De Travail Journal of Mathematical Imaging and Vision Année : 2021

From Riemannian trichromacy to quantum color opponency via hyperbolicity

Résumé

We propose a mathematical description of human color perception that relies on a hyper-bolic structure of the space P of perceived colors. We show that hyperbolicity allows us to reconcile both trichromaticity, from a Riemannian point of view, and color opponency, from a quantum viewpoint. In particular, we will underline how the opponent behavior can be represented by a rebit, a real analog of a qubit, whose state space is endowed with the Hilbert metric.
Fichier principal
Vignette du fichier
paper01.pdf (267.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02479897 , version 1 (14-02-2020)

Identifiants

  • HAL Id : hal-02479897 , version 1

Citer

Michel Berthier, Edoardo Provenzi. From Riemannian trichromacy to quantum color opponency via hyperbolicity. 2020. ⟨hal-02479897⟩
130 Consultations
202 Téléchargements

Partager

More