Global weak solutions of a Hamiltonian regularised Burgers equation - Archive ouverte HAL
Article Dans Une Revue Journal of Dynamics and Differential Equations Année : 2024

Global weak solutions of a Hamiltonian regularised Burgers equation

Résumé

A nondispersive, conservative regularisation of the inviscid Burgers equation is proposed and studied.Inspired by a related regularisation of the shallow water system recently introduced by Clamond and Dutykh,the new regularisation provides a family of Galilean-invariant interpolants between the inviscid Burgers equationand the Hunter--Saxton equation. It admits weakly singular regularised shocks and cusped traveling-wave weak solutions.The breakdown of local smooth solutions is demonstrated, and the existence of two types of global weak solutions, conserving or dissipating an $H^1$ energy, is established.Dissipative solutions satisfy an Oleinik inequality like entropy solutions of the inviscid Burgers equation.As the regularisation scale parameter $\ell$ tends to $0$ or $\infty$, limits of dissipative solutions are shown to satisfy the inviscid Burgers or Hunter--Saxton equation respectively, forced by an unknown remaining term.
Fichier principal
Vignette du fichier
rB.pdf (667.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02478872 , version 1 (14-02-2020)
hal-02478872 , version 2 (10-03-2022)

Identifiants

Citer

Billel Guelmame, Stéphane Junca, Didier Clamond, Robert L Pego. Global weak solutions of a Hamiltonian regularised Burgers equation. Journal of Dynamics and Differential Equations, 2024, 36 (2), pp.1561-1589. ⟨10.1007/s10884-022-10171-0⟩. ⟨hal-02478872v2⟩
521 Consultations
334 Téléchargements

Altmetric

Partager

More