On the Cusa-Huygens inequality - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

On the Cusa-Huygens inequality

Résumé

Sharp bounds of various kinds for the famous unnormalized sinc function sin x/x are useful in mathematics, physics and engineering. In this paper, we reconsider the Cusa-Huygens inequality by solving the following problem: given real numbers a, b, c ∈ R and T ∈ (0, π/2], we find the necessary and sufficient conditions such that the inequalities sin x / x > a + b cos c x, x ∈ (0, T) and sin x / x < a + b cos c x, x ∈ (0, T) hold true. We use the elementary methods, only, improving several known results in the existing literature.
Fichier principal
Vignette du fichier
new-bounds-new-bib.pdf (282.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02475321 , version 1 (11-02-2020)

Identifiants

  • HAL Id : hal-02475321 , version 1

Citer

Yogesh J. Bagul, Christophe Chesneau, Marko Kostić. On the Cusa-Huygens inequality. 2020. ⟨hal-02475321⟩
172 Consultations
197 Téléchargements

Partager

More