Time Series Alignment with Global Invariances - Archive ouverte HAL
Article Dans Une Revue Transactions on Machine Learning Research Journal Année : 2022

Time Series Alignment with Global Invariances

Résumé

Multivariate time series are ubiquitous objects in signal processing. Measuring a distance or similarity between two such objects is of prime interest in a variety of applications, including machine learning, but can be very difficult as soon as the temporal dynamics and the representation of the time series, i.e. the nature of the observed quantities, differ from one another. In this work, we propose a novel distance accounting both feature space and temporal variabilities by learning a latent global transformation of the feature space together with a temporal alignment, cast as a joint optimization problem. The versatility of our framework allows for several variants depending on the invariance class at stake. Among other contributions, we define a differentiable loss for time series and present two algorithms for the computation of time series barycenters under this new geometry. We illustrate the interest of our approach on both simulated and real world data and show the robustness of our approach compared to state-of-the-art methods.
Fichier principal
Vignette du fichier
time_series_alignment_with_glo.pdf (2.61 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02473959 , version 1 (01-11-2022)

Identifiants

Citer

Titouan Vayer, Romain Tavenard, Laetitia Chapel, Nicolas Courty, Rémi Flamary, et al.. Time Series Alignment with Global Invariances. Transactions on Machine Learning Research Journal, 2022. ⟨hal-02473959⟩
376 Consultations
218 Téléchargements

Altmetric

Partager

More