Unified Riccati theory for optimal permanent and sampled-data control problems in finite and infinite time horizons - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2021

Unified Riccati theory for optimal permanent and sampled-data control problems in finite and infinite time horizons

Résumé

We revisit and extend the Riccati theory, unifying continuous-time linear-quadratic optimal permanent and sampled-data control problems, in finite and infinite time horizons. In a nutshell, we prove that: -- when the time horizon T tends to $+\infty$, one passes from the Sampled-Data Difference Riccati Equation (SD-DRE) to the Sampled-Data Algebraic Riccati Equation (SD-ARE), and from the Permanent Differential Riccati Equation (P-DRE) to the Permanent Algebraic Riccati Equation (P-ARE); -- when the maximal step of the time partition $\Delta$ tends to $0$, one passes from (SD-DRE) to (P-DRE), and from (SD-ARE) to (P-ARE). Our notations and analysis provide a unified framework in order to settle all corresponding results.
Fichier principal
Vignette du fichier
riccati.pdf (318.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02473706 , version 1 (11-02-2020)

Identifiants

Citer

Loïc Bourdin, Emmanuel Trélat. Unified Riccati theory for optimal permanent and sampled-data control problems in finite and infinite time horizons. SIAM Journal on Control and Optimization, 2021, 59 (2), pp.489--508. ⟨10.1137/20M1318535⟩. ⟨hal-02473706⟩
112 Consultations
126 Téléchargements

Altmetric

Partager

More