Nanomechanics and Raman Spectroscopy of in Situ Native Carbohydrate Storage Granules for Enhancing Starch Quality and Lignocellulosic Biomass Production - Archive ouverte HAL Access content directly
Journal Articles ACS Omega Year : 2020

Nanomechanics and Raman Spectroscopy of in Situ Native Carbohydrate Storage Granules for Enhancing Starch Quality and Lignocellulosic Biomass Production

Abstract

Alternative energy strategies based on plant biomass-derived bioenergy and biofuels rely on understanding and optimization of plant structure, chemistry, and performance. Starch, a constitutive element of all green plants, is important to food, biofuels, and industrial applications. Models of carbohydrate storage granules are highly heterogeneous in representing morphology and structure, though a deeper understanding of the role of structure in functional behavior is emerging. A better understanding of the in situ nanoscale properties of native granules is needed to help improve the starch quality in food crops as well as optimize lignocellulosic biomass production in perennial nonfood crops. Here, we present a new technique called soft mechanical nano-ablation (sMNA) for accessing the interior of the granules without compromising the inner nanostructure. We then explore the nanomechanics of granules within the ray parenchyma cells of Populus xylem, a desirable woody biofuel feedstock. The employed soft outer layer nanoablation and atomic force microscopy reveal that the inner structure comprises 156 nm blocklets arranged in a semicrystalline organization. The nanomechanical properties of the inner and outer structures of a single starch granule are measured and found to exhibit large variations, changing by a factor of 3 in Young's modulus and a factor of 2 in viscoplastic index. These findings demonstrate how the introduced approach facilitates studies of structure−function relationships among starch granules and more complex secondary cell wall features as they relate to plant performance.
Fichier principal
Vignette du fichier
2020-ACS Omega.pdf (6.11 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-02469729 , version 2 (27-02-2020)

Identifiers

Cite

Rubye Farahi, Aude L. Lereu, Anne Charrier, Udaya C Kalluri, Brian H Davison, et al.. Nanomechanics and Raman Spectroscopy of in Situ Native Carbohydrate Storage Granules for Enhancing Starch Quality and Lignocellulosic Biomass Production. ACS Omega, 2020, 5, pp.2594−2602. ⟨10.1021/acsomega.9b02849⟩. ⟨hal-02469729⟩
185 View
73 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More