EXTRINSIC UPPER BOUNDS THE FIRST EIGENVALUE OF THE p-STEKLOV PROBLEM ON SUBMANIFOLDS - Archive ouverte HAL
Journal Articles Communications in Mathematics Year : 2022

EXTRINSIC UPPER BOUNDS THE FIRST EIGENVALUE OF THE p-STEKLOV PROBLEM ON SUBMANIFOLDS

Abstract

We prove Reilly-type upper bounds for the first non-zero eigen-value of the Steklov problem associated with the p-Laplace operator on sub-manifolds with boundary of Euclidean spaces as well as for Riemannian products R × M where M is a complete Riemannian manifold.
Fichier principal
Vignette du fichier
720_Roth_1.pdf (337.56 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-02466652 , version 1 (04-02-2020)
hal-02466652 , version 2 (07-04-2022)

Licence

Identifiers

Cite

Julien Roth. EXTRINSIC UPPER BOUNDS THE FIRST EIGENVALUE OF THE p-STEKLOV PROBLEM ON SUBMANIFOLDS. Communications in Mathematics, In press, Volume 30 (2022), Issue 1, pp.49-61. ⟨10.46298/cm.9282⟩. ⟨hal-02466652v2⟩
99 View
768 Download

Altmetric

Share

More