In-network Collaborative Mobile Crowdsensing - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

In-network Collaborative Mobile Crowdsensing

Yifan Du

Résumé

Our work aims to make opportunistic crowdsensing a reliable means of detecting urban phenomena, as a component of smart city development. We believe that the optimal method for achieving this is by enforcing the cost-effective collection of high quality data. We then investigate a supporting middleware solution that reduces both the network traffic and computation at the cloud. To this end, our research focuses on defining a set of protocols that together implement "context-aware in-network collaborative mobile crowdsensing" by combining: (i) The inference of the crowdsensors' physical context so as to characterize the gathered data; (ii) The context-aware grouping of crowdsensors to share the workload and filter out low quality data; and (iii) Data aggregation at the edge to enhance the knowledge transferred to the cloud.
Fichier principal
Vignette du fichier
In_network_Collaborative_Crowdsensing__PerCom_.pdf (466.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02463611 , version 1 (11-03-2020)

Identifiants

Citer

Yifan Du. In-network Collaborative Mobile Crowdsensing. PerCom PhD Forum 2020: IEEE International Conference on Pervasive Computing and Communications PhD Forum, Mar 2020, Austin / Virtual, United States. ⟨10.1109/PerComWorkshops48775.2020.9156268⟩. ⟨hal-02463611⟩

Collections

INRIA INRIA2
139 Consultations
176 Téléchargements

Altmetric

Partager

More