Zeta Functions and the (Linear) Logic of Markov Processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Zeta Functions and the (Linear) Logic of Markov Processes

Résumé

In a series of papers, the author introduced models of linear logic known as "Interaction Graphs". These models generalise Girard's various geometry of interaction constructions, providing a unifying framework for those. In this work, we exhibit how these models can be understood mathematically through a cocycle property satisfied by zeta functions of dynamical systems. Focussing on probabilistic models, we then explain how the notion of graphings used in the models captures a natural class of Markov processes. We further extend previous constructions to provide a model of linear logic as a type system over the set of all (discrete-time, time-independent) sub-Markov processes.
Fichier principal
Vignette du fichier
Markov-Zeta-short.pdf (284.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02458330 , version 1 (28-01-2020)
hal-02458330 , version 2 (24-02-2020)
hal-02458330 , version 3 (27-01-2021)
hal-02458330 , version 4 (07-11-2022)
hal-02458330 , version 5 (03-11-2023)
hal-02458330 , version 6 (06-04-2024)

Identifiants

Citer

Thomas Seiller. Zeta Functions and the (Linear) Logic of Markov Processes. 2020. ⟨hal-02458330v2⟩
308 Consultations
234 Téléchargements

Altmetric

Partager

More