Zeta Functions and the (Linear) Logic of Markov Processes - Archive ouverte HAL
Article Dans Une Revue Logical Methods in Computer Science Année : 2024

Zeta Functions and the (Linear) Logic of Markov Processes

Résumé

The author introduced models of linear logic known as ”Interaction Graphs” which generalise Girard’s various geometry of interaction constructions. In this work, we establish how these models essentially rely on a deep connection between zeta functions and the execution of programs, expressed as a cocycle. This is first shown in the simple case of graphs, before being lifted to dynamical systems. Focussing on probabilistic models, we then explain how the notion of graphings used in Interaction Graphs captures a natural class of sub-Markov processes. We then extend the realisability constructions and the notion of zeta function to provide a realisability model of second-order linear logic over the set of all (discrete-time) sub-Markov processes.
Fichier principal
Vignette du fichier
Markov-zeta-lmcs-final.pdf (591.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02458330 , version 1 (28-01-2020)
hal-02458330 , version 2 (24-02-2020)
hal-02458330 , version 3 (27-01-2021)
hal-02458330 , version 4 (07-11-2022)
hal-02458330 , version 5 (03-11-2023)
hal-02458330 , version 6 (06-04-2024)

Identifiants

Citer

Thomas Seiller. Zeta Functions and the (Linear) Logic of Markov Processes. Logical Methods in Computer Science, 2024, Volume 20 (3), ⟨10.46298/lmcs-20(3:18)2024⟩. ⟨hal-02458330v6⟩
308 Consultations
234 Téléchargements

Altmetric

Partager

More