Deconfined critical point in a doped random quantum Heisenberg magnet
Résumé
We describe the phase diagram of electrons on a fully connected lattice with random hopping, subject to a random Heisenberg spin exchange interaction between any pair of sites and a constraint of no double occupancy. A perturbative renormalization group analysis yields a critical point with fractionalized excitations at a nonzero critical value pc of the hole doping p away from the half-filled insulator. We compute the renormalization group to two loops, but some exponents are obtained to all loop order. We argue that the critical point pc is flanked by confining phases: a disordered Fermi liquid with carrier density 1+p for p>pc and a metallic spin glass with carrier density p for p
INSPIRE HEP : Connectez-vous pour contacter le contributeur
https://hal.science/hal-02447828
Soumis le : mardi 21 janvier 2020-21:05:07
Dernière modification le : vendredi 22 novembre 2024-11:20:02
Dates et versions
Identifiants
- HAL Id : hal-02447828 , version 1
- ARXIV : 1912.08822
- DOI : 10.1103/PhysRevX.10.021033
- INSPIRE : 1771867
Citer
Darshan G. Joshi, Chenyuan Li, Grigory Tarnopolsky, Antoine Georges, Subir Sachdev. Deconfined critical point in a doped random quantum Heisenberg magnet. Phys.Rev.X, 2020, 10 (2), pp.021033. ⟨10.1103/PhysRevX.10.021033⟩. ⟨hal-02447828⟩
92
Consultations
0
Téléchargements