Computational analysis of strain-induced electronic and optical properties of Zn3As2
Résumé
In this article, strain-induced electronic and optical properties of Zn3As2 are assessed applying linear combination of atomic orbitals method under the framework of density functional theory. We present the fundamental properties namely, energy band gap, density of states, real and imaginary parts of dielectric function and electronic loss function. Moreover, the plasmon frequency, effective mass of charge carriers, excitonic binding energy, refractive index and reflectivity are also presented. The characteristic values are found to lie in a favourable range and suggest suitability of Zn3As2 in solar energy applications. The results provide necessary input for the photovoltaic applications to the experimental researchers.