Communication Dans Un Congrès Année : 2020

Support recovery and sup-norm convergence rates for sparse pivotal estimation

Résumé

In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level. The canonical pivotal es-timator is the square-root Lasso, formulated along with its derivatives as a "non-smooth + non-smooth" optimization problem. Modern techniques to solve these include smoothing the datafitting term, to benefit from fast efficient proximal algorithms. In this work we show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estima-tors. Thanks to our theoretical analysis, we provide some guidelines on how to set the smoothing hyperparameter, and illustrate on synthetic data the interest of such guidelines.
Fichier principal
Vignette du fichier
2001.05401.pdf (4.77 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02444978 , version 1 (19-01-2020)

Identifiants

  • HAL Id : hal-02444978 , version 1

Citer

Mathurin Massias, Quentin Bertrand, Alexandre Gramfort, Joseph Salmon. Support recovery and sup-norm convergence rates for sparse pivotal estimation. AISTATS2020, Aug 2020, Virtual, Italy. ⟨hal-02444978⟩
100 Consultations
39 Téléchargements

Partager

More