CSI-Based Probabilistic Indoor Position Determination: An Entropy Solution - Archive ouverte HAL
Article Dans Une Revue IEEE Access Année : 2019

CSI-Based Probabilistic Indoor Position Determination: An Entropy Solution

Résumé

Location Fingerprinting (LF) is a promising localization technique that enables enormous commercial and industrial Location-Based Services (LBS). Existing approaches either appeal to the simple Received Signal Strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer Channel State Information (CSI), whose intricate structure leads to an increased computational complexity. In this paper, we adopt Autoregres-sive (AR) modeling based entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while exploiting the most location-specific statistical channel information. On this basis, we design EntLoc, a CSI-based probabilistic indoor localization system using commercial off-the-shelf Wi-Fi devices. EntLoc is deployed in an office building covering over 200 m 2. Extensive indoor scenario experiments corroborate that our proposed system yields superior localization accuracy over previous approaches even with only one signal transmitter.
Fichier principal
Vignette du fichier
08911385.pdf (2.03 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02444914 , version 1 (20-01-2020)

Licence

Identifiants

Citer

Luan Chen, Iness Ahriz, Didier Le Ruyet. CSI-Based Probabilistic Indoor Position Determination: An Entropy Solution. IEEE Access, 2019, 7, pp.170048-170061. ⟨10.1109/ACCESS.2019.2955747⟩. ⟨hal-02444914⟩
131 Consultations
360 Téléchargements

Altmetric

Partager

More