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ABSTRACT Location Fingerprinting (LF) is a promising localization technique that enables enormous
commercial and industrial Location-Based Services (LBS). Existing approaches either appeal to the simple
Received Signal Strength (RSS), which suffers from dramatic performance degradation due to sophisticated
environmental dynamics, or rely on the fine-grained physical layer Channel State Information (CSI), whose
intricate structure leads to an increased computational complexity. In this paper, we adopt Autoregres-
sive (AR) modeling based entropy of CSI amplitude as location fingerprint, which shares the structural
simplicity of RSS while exploiting the most location-specific statistical channel information. On this basis,
we design EntLoc, a CSI-based probabilistic indoor localization system using commercial off-the-shelf
Wi-Fi devices. EntLoc is deployed in an office building covering over 200 m2. Extensive indoor scenario
experiments corroborate that our proposed system yields superior localization accuracy over previous
approaches even with only one signal transmitter.

INDEX TERMS Indoor localization, location fingerprinting, channel state information, entropy, autoregres-
sive modeling, Kernel regression.

I. INTRODUCTION
Indoor Location-based Services (ILBS) have drawn
tremendous attractions in recent years due to its huge
potential values for wide-scale commercial and indus-
trial applications [1]–[3], such as tracking products through
manufacturing lines, shop advertising for target customers,
security surveillance in banking system, first-responder nav-
igation at medical center, etc.. Despite the up-to-date Global
Navigation Satellite System (GNSS) can already provide
precise location-aware information in the outdoor space, it is
functionally ineligible indoors due to the signal blocking
of architectures. Accurate, reliable and ubiquitous indoor
localization solutions have been extensively studied in recent
years. Examples include Wi-Fi [4]–[6], Bluetooth [7], Radio
Frequency Identification (RFID) [8], UltraWideband (UWB)
[9], infrared [10], visible light [11], sound [12], geomagnetic
field [13] and so forth. Among these techniques, Wi-Fi based
positioning is probably of the greatest popularity, mainly
owing to the pervasive availability of the high-throughput
and low-cost Wi-Fi technology. Accordingly, indoor position
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determination can be then operated in Wi-Fi based commu-
nication systems through firmware upgrades and software
implementations.

In general, traditional indoor localization is commonly
conducted via the geometric mapping or the Location Finger-
printing (LF)-based methods [14]. For geometric mapping,
intermediate spatial parameters like distance or direction with
regard to the Reference Points (RPs) are first derived from
certain physical measurements. Typical parameters include
Time of Flight (ToF) [15] and Angle of Arrival (AoA) [16].
Target’s physical location can be further inferred by using
geometric algorithms (e.g., trilateration or triangulation).
Nevertheless, the performance of geometric mapping heavily
relies on the Line-of-Sight (LoS) condition. The rich indoor
multipath and shadowing effects, to a great extent, blur the
monotonous relation between physical measurements and
distances, complicate RF propagation modeling, and thus
degenerate positioning accuracy. As an alternative to analyze
the sophisticated signal propagation, location fingerprinting
adopts a pattern-matching approach. The main idea is to
collect signal features from predefined RP locations in the
area of interest to construct a fingerprint radio map (a.k.a.
site survey) in the offline phase. Subsequently, in the online
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phase, localization can be simply accomplished by match-
ing the measured fingerprint at an unknown location with
those in the offline database to return the best-fitted location
estimation.

In IEEE 802.11n standard, Wi-Fi networks use Multiple
Input Multiple Output Orthogonal Frequency Division Mul-
tiplexing (MIMO-OFDM) technique to modulate data on
different orthogonal sub-channels and transmit them over
multiple transmit-receive (TX-RX) antenna pairs simulta-
neously. Therefore, it can reflect the fine-grained channel
feature known as channel response, which can be partially
extracted from many commercial off-the-shelf Wi-Fi Net-
work Interface Cards (NICs) [17], [18] in the format of
Channel State Information (CSI). Specifically, CSI is aggre-
gated by a set of channel estimations depicting the amplitude
and phase information of each OFDM subcarrier. Different
from the Received Signal Strength (RSS) as the indicator
of the Medium Access Control (MAC) layer’s link quality,
the Physical (PHY) layer CSI measurement can serve as a
preferable location signature characterized by the small-scale
multipath fading, which significantly deteriorates the quality
of its RSS counterpart. Furthermore, CSI indicates channel
qualities on the level of multiple subcarriers and thus pro-
vides richer location-specific information than RSS-based
localization schemes.

Generally, indoor location fingerprinting algorithms con-
sist of deterministic and probabilistic methods [5]. Deter-
ministic algorithms can be easily implemented but fail to
fully exploit information about channel fluctuations in the
environment and consequently lead to error-prone loca-
tion estimate. On the contrary, probabilistic algorithms
embrace the channel variation by inferring a probabilis-
tic model reflected by the signal distribution, thus achiev-
ing better localization performance than deterministic ones
[19]. The most adopted hypothesis in fingerprint localiza-
tion problem is to model the signal signatures (RSS or
CSI power summation) as well-known Gaussian random
variables [19], [20]. In practice, however, we experimen-
tally observe that certain devices record noisy signals with
intricate non-Gaussian distributions, which complicate the
fingerprinting process and incur ambiguity for location esti-
mation. Moreover, the complex nature of indoor scenario
makes probabilistic approaches more vulnerable when the
signal statistics appear in the format of multivariate structure
(e.g. multi-subcarrier CSI). Therefore, a fingerprint which
shares the simplicity of RSS (scalar) but also preserves rich
statistical location-dependent information (like CSI) would
be highly desirable.

In this paper, to address the above underlying challenges
for Wi-Fi fingerprinting based localization, we resort to the
Shannon entropy metric which derives from the direct proba-
bilistic transformation of the channel state information. This
entropy-based channel interpretation enables us to perceive
the indoor statistical diversity with a new insight. Since
we avoid the massive storage of measurements driven by
accurate Probability Density Function (PDF) estimation, this

entropy transformation process largely reduces the offline
fingerprint storage as well as the online computational com-
plexity of pattern-matching. Through extensive experiments
conducted in a typical indoor environment, we will show that
the PDF of the amplitude for each OFDM subcarrier can be
converted into entropy metric which outperforms its original
channel response or RSS fingerprints. The reason why we
ignore the phase information in this case is that CFR phases
of one subcarrier are normally uniformly distributed [21],
which incurs equally maximal entropy values for all locations
and thus makes the phase-based entropy more trivial in our
localization problem.

Particularly, we design EntLoc, a CSI entropy based prob-
abilistic indoor localization system using commodity Wi-Fi
devices. To reduce the measurement noise, we first convert
the raw CSI measurements into the time domain Channel
Impulse Response (CIR) via Inverse Fast Fourier Transform
(IFFT). A power-based tap filtering scheme is then introduced
to preserve the location-specific CIR taps, which contains the
most relevant information related to multipath effects. After
applying Fast Fourier Transform (FFT), a smoothed version
of Channel Frequency Response (CFR) can be generated for
the upcoming fingerprinting process. Subsequently, for the
radio map construction, an Autoregressive (AR) modeling
technique is adopted to accurately estimate the entropy of
filtered CFR amplitude as fingerprint. Meanwhile, we exper-
imentally observe that the entropy values belonging to two
endpoint subcarriers of each RX antenna cause the most
obvious ambiguity with other subcarrier values. This moti-
vate us to eliminate these endpoint entropies, which further
simplifies the fingerprint structure through this dimension
reduction process. Accordingly, due to the structural simplic-
ity of estimated CFR amplitude entropy, the succinct and con-
venientManhattan distance [22] can be fully competent as the
similarity metric in our online positioning phase. Afterwards,
we leverage the optimal kernel regression scheme to accu-
rately infer the target’s location. The whole set of experiments
were carried out on the lightweight HummingBoard plat-
form [23], which tremendously facilitates the labor-intensive
and time-consuming fingerprinting implementation. Further-
more, the experimental results also demonstrate the supe-
rior performance of our proposed system over other channel
response based localization schemes.

In summary, our main contributions of this paper are set
out below.
• As far as we are aware of, this is the first work

to statistically study AR modeling based entropy
signature in CSI fingerprint localization system.
This simple fingerprint structure helps decrease
the pattern-matching complexity and its informative
statistical embodiment also facilitates the location
estimation accuracy.

• We propose a power based pre-processing filtering
scheme to mitigate the irrelevant noisy component in
CSI measurements, thus further improving the location
fingerprinting performance.
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• We implement extensive positioning experiments on
the lightweight HummingBoard Pro device, which
remarkably enhances the experimental efficiency.

The rest of this paper is organized as follows. In Section II,
we review the state-of-the-art related works. The CSI prelim-
inaries are presented in Section III. We elaborate the overall
architecture design of our proposed localization system along
with detailed methodology in Section IV, and the experimen-
tal results are provided in Section V. Conclusions are drawn
in Section VI.

II. RELATED WORK
Prevalent Wi-Fi fingerprint localization approaches mainly
exploit two types of wireless signal properties: the received
signal strength and the channel response. We present related
works in accordance with these two categories.

A. FINGERPRINTING VIA RSS
Due to the easy acquisition of wireless signal power mea-
surements, RSS-based fingerprinting plans have been widely
adopted in various mainstream indoor positioning systems.
RADAR [24] performed comprehensive site surveys for
the first time and utilized RSS measurements recorded
by wireless infrastructure to generate position fingerprints.
Subsequently, the authors of RADAR used the deterministic
k-Nearest Neighbors (kNN) technique to estimate the user’s
location with an average precision of 3 meters. In con-
trast, Youssef et al. employed the probabilistic approach
in Horus [20] by using joint clustering algorithm and pro-
vided an accuracy improvement of 2.1 m, which outper-
formed RADAR even with less computational complexity.
However, the instability of RSS still remains challenging.
More recently, researchers of LiFS [25] brought up a novel
fingerprint space by utilizing the spatial relations of RSS
measurements, yielding low human cost for site survey and
competitive accuracy over RADAR. Khatab et al. [26] used
auto-encoder based deep extreme learning machine to extract
high level data features from RSS fingerprint, which further
improved the localization performance. Moreover, Wu et al.
designed DorFin [27], a RSS-based location fingerprinting
system which successfully tackled error mitigation problem
by quantifying APs’ distinction, alleviating RSS outliers and
amending transitional RSS recordings. It reduced the mean
and 95th percentile errors to respective 2.5 m and 6.2 m, out-
performing both RADAR and Horus by nearly 50% accuracy
improvement.

B. FINGERPRINTING VIA CHANNEL RESPONSE
In recent years, channel response based fingerprinting
approaches have attracted massive attention due to their capa-
bility of harnessing the rich multipath information indoors.
Sen et al. proposed the PinLoc [28], in which the local-
ization process was conducted on a set of 1 m × 1 m
spots. The main observation in PinLoc was that the proba-
bility density function of CFR on a single subcarrier illus-
trated clustered distributions on the complex plane. Thus,

the measurements of channel frequency response on each
subcarrier were modeled to be Gaussian mixture distributed.
The experimental result of PinLoc showed an 89% mean
accuracy for 100 spots. In FIFS [19], the authors leveraged
the spatial and frequency diversity of the channel response for
Wi-Fi fingerprinting localization. In addition, FIFS used the
power summation over all independent subcarriers as loca-
tion fingerprint and applied Maximum A Posteriori (MAP)
algorithm to achieve an improved accuracy over RSS based
Horus system. Wang et al. presented DeepFi [29], a deep
learning based indoor fingerprint positioning system using
CFR information. DeepFi managed to train all the weights
of a deep network as fingerprints in the offline stage, and
used Radial Basis Function (RBF) based probabilistic method
to acquire estimated location in the online stage. It achieved
20% accuracy improvement over FIFS. Furthermore, when
it comes to the time domain CIR, authors in [30] proposed
to exploit the amplitude of CIR (ACIR) vector to accomplish
location estimation through nonparametric kernel regression
scheme. Simulation results showed a distinguished perfor-
mance superiority over the traditional RSS based fingerprint-
ing methods.

III. CSI PRELIMINARIES
In wireless communication systems, the receiver conducts
channel estimation through a mechanism named channel
sounding. For the packet-basedMIMO-OFDM IEEE 802.11n
system, training sequences, namely High Throughput Long
Training Fields (HT-LTF), are sent in the preamble, which is
instantly used by the receiver to derive channel state informa-
tion. Technically, CSI represents the PHY layer channel prop-
erties and reveals the combined effects of signal multipath
propagation including amplitude attenuation and phase shift.
Each CSI entry represents the Channel Frequency Response
(CFR), which can be denoted as [14]

H (fk ) = ‖H (fk )‖ej
6 H (fk ) (1)

whereH (fk ) is the complex CFR at the subcarrier with central
frequency of fk . ‖H (fk )‖ and 6 H (fk ) denotes its amplitude
and phase, respectively.

In the time domain, to fully characterize the indoor mul-
tipaths, the wireless propagation channel is modeled as a
temporal linear filter, known as Channel Impulse Response
(CIR). Mathematically, it is expressed by [14]

h(τ ) =
T∑
i=1

αie−jϕiδ(τ − τi) (2)

where αi, ϕi and τi are the amplitude, phase and time delay
spread of the ith path, respectively. T is the total number of
multipaths and δ(·) is the Dirac delta function.

However, practically, it is worth mentioning that, all the
experiments in our work are based on Linux CSI tool [17],
whose Intel 5300 NIC reports 30 out of 56 OFDM subcarriers
for 20MHz bandwidth CFR packet. After applying IFFT on
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measured CFR, the time domain CIR will be approximated
with an equivalent number of 30 channel filter taps.

IV. SYSTEM DESIGN
In this section, we lay out the detailed architecture of the
proposed indoor fingerprint positioning system.

A. OVERVIEW
The overall architecture of the proposed system is illustrated
in Fig. 1. In general, it consists of two major functionality
components: the offline fingerprint radio map construction
and the online target’s position estimation. For CSI finger-
print database construction, once getting the received raw
CFR packets through signal war-driving, we first employ
a tap filtering based pre-processing scheme to extract the
most informative and location-dependent components in the
multipath-rich indoor scenario. Subsequently, we model the
statistical features of filtered CFR amplitude by calculat-
ing an AR modeling based entropy metric and then build
a representative fingerprint radio map after removing the
ambiguous endpoint subcarriers. Afterwards, for online loca-
tion estimation process, when a mobile target arrives into the
area of interest, it executes the same procedures to acquire
the entropy vector and matches against the learned offline
attributes. Finally, the simple Manhattan distance based ker-
nel regression approach can be fully leveraged to accomplish
the physical position estimation of the mobile target.

FIGURE 1. The proposed system architecture.

In what follows, we will dissect each component of the
proposed system in a divide-and-conquer manner.

B. OFFLINE FINGERPRINT SITE SURVEY
1) PROBLEM FORMULATION
First of all, we begin the fingerprinting methodology with
the presentation of problem formulation. In the offline stage,
the area of interest is properly marked into M Reference
Point (RP) locations. Each RP location is represented by a
coordinate `m = (xm, ym), where xm and ym are the X- and
Y- coordinates of the mth RP location and m ∈ [1,M ].
Considering that there are S Access Points (APs) as signal
transmitters (TX) and one mobile user as the receiver (RX).
Each AP has Nt TX antennas and the mobile user has Nr RX

antennas. So each pair of TX-RX contains Nt · Nr antenna
links. In addition, every CSI link has the same number of K
OFDM subcarriers.

In the offline stage, the radio signature at each RP location
is composed of concatenated CFR packets (samples) mea-
sured from S available APs. Thus each CFR signature has
the total dimensionality of S · R, where R is the signature’s
dimensionality from a single AP and R = Nt · Nr · K .
To be more specific, the offline radio signature measured at
mth RP location from all S APs is given by the set Hm =

{H1
m, . . . ,H

s
m, . . . ,H

S
m} and s ∈ [1, S]. Here Hs

m ∈ CN×R

contains N consecutive 1 × R dimensional CFR samples
measured at RP location `m from the sth AP. This CFRmatrix
can be expressed by the following equation

Hs
m =



H s
m(1, 1) · · · H

s
m(1, r) · · · H

s
m(1,R)

...
. . .

...
. . .

...

H s
m(n, 1) · · · H

s
m(n, r) · · · H

s
m(n,R)

...
. . .

...
. . .

...

H s
m(N , 1) · · · H

s
m(N , r) · · · H

s
m(N ,R)

 (3)

where n ∈ [1,N ] and r ∈ [1,R].
In the online stage, a mobile device (target) at an unknown

location `θ = (xθ , yθ ) measures the CFR matrix from the sth

AP which is given by Gs
θ with the same dimension of Hs

m.
Likewise, the online measured CFR signature at the location
`θ can be denoted by the set Gθ = {G1

θ , . . . ,G
s
θ , . . . ,G

S
θ }.

Accordingly, the mobile target’s position can then be esti-
mated as ˆ̀θ = (x̂θ , ŷθ ) by exploiting these online measure-
ments and the stored offline signal database.

2) CSI PRE-PROCESSING SCHEME
Recall that channel state information completely character-
izes the multipath channel and preserves the fine location
dependency, which makes it a good choice for location fin-
gerprint. However, it would be fair to state that for the
existing Wi-Fi networks, bandwidth limitation introduces
severe location ambiguity which leads to limited localization
accuracy [31]. By using the commodity Wi-Fi with center
frequency of 2.4 GHz, the bandwidth of the system is there-
fore 20 MHz in this case. Since CFR can be converted into
CIR via inverse fast Fourier transform, an estimation of CIR
with time resolution of 1/20MHz = 50 ns is exposed. Since
typical indoor maximum excess delay τmax is smaller than
500 ns [32], given a time resolution of 50 ns, approximately
only the first 10 out of the 30 accessible CIR time taps are
relevant to multipath propagation. In other words, the remain-
ing 20 taps are irrelevant for localization purpose. Moreover,
when the Signal-to-Noise Ratio (SNR) is not high enough,
the receiver’s Additive White Gaussian Noise (AWGN) at
these time taps will only make the accuracy worse.

Hence, based on the system bandwidth, a reasonable num-
ber of relevant time samples should be chosen for the sake
of computation efficiency and accuracy. In this research,
we design a power-based tap filtering method to preserve
the most informative channel features for fingerprinting.
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Specifically, for the conciseness of expression, we define
the individual raw CFR signature as H ∈ C1×K . Through
IFFT, we first convert H into the same dimensional CIR
vector h. For each 1 × K CIR packet, we calculate the
average channel power for each time tap, denoted by U =
(u1, . . . , uk , . . . , uK ), k ∈ [1,K ], where uk = |h[k]|2 and
h[k] denotes the k th complex tap value of one CIR packet.
Then, we define a cumulative contribution rate of the first k
taps as

Ck =
k∑
i=1

ui

/ K∑
i=1

ui. (4)

If the cumulative contribution rate of the first L taps, i.e., CL ,
is greater than the predefined threshold C , we then apply a
simple rectangular window with length L to truncate the rest
(K − L) taps. Next, FFT is further utilized on filtered CIR to
yield the smoothed version of CFR. As displayed in Fig. 2,
we define the threshold of the cumulative contribution rate as
99%, the first 10 taps are thereby selected to preserve themost
relevant multipath information for localization. Moreover,
the differences between the raw CFRmeasurements and their
smoothed versions can also be observed in Fig. 3.

FIGURE 2. Power threshold based tap filtering scheme: (a) channel
impulse response; (b) power threshold.. (a) Channel Impulse Response.
(b) Power Threshold.

FIGURE 3. Tap filtering based CFR smoothing: (a) raw CFR; (b) CFR after
tap filtering.. (a) Raw CFR. (b) CFR After Tap Filtering.

3) AR-MODELING BASED ENTROPY ESTIMATION
As aforementioned in Section I, probabilistic positioning
algorithms analytically outperform their deterministic coun-
terparts. Additionally, numerous literatures [19], [20], [33]
further reveal such superior localization performance of the

probabilistic algorithms over their deterministic rivals in the
complex indoor environment. Generic probabilistic methods
include the Bayesian network [34], Kullback-Leibler Diver-
gence (KLD) [35], [36], Gaussian process [37], etc.. The
essential cause resides in the fact that PDF contains the com-
plete statistical characterizations of the complex random vari-
ables, which are capable of providing better location-specific
RF signatures.

The simplest probabilistic model for CFR is based on the
assumption that there are a large number of statistically inde-
pendent reflected and scattered paths with random amplitudes
corresponding to a single subcarrier. By the central limit the-
orem, it can be reasonably modeled as circularly-symmetric
Gaussian (complex Gaussian) random variables [38]. Thus,
the amplitudes of the complex Gaussian process are essen-
tially Rayleigh distributed. If the channel has a fixed LoS
component, the received signal then equals the superposition
of a complex Gaussian component and this LoS component.
In this case, the CFR amplitude follows the Rician distribu-
tion. However, due to the sophisticated indoor environment
and the imperfection of wireless devices, most measured CFR
values are non-Gaussian distributed or even do not fit any
known distribution [28], [39], [40]. Meanwhile, for multivari-
ate fingerprint structure (e.g., multi-subcarrier CFR in our
case), existing statistical tools only work under the condi-
tion of identifiably distributed measurements [36]. Besides,
most probabilistic approaches require sufficient number of
measurements stored in the fingerprint database, which guar-
antees an accurate PDF estimation but suffers huge system
burden.

Therefore, in this paper, we resort to the well-known
Shannon entropy [41] as the fingerprint alternative in our
localization system. Given the offline and online CFR ampli-
tude PDF estimates p̂Hs

m
(β; r) and p̂Gs

θ
(β; r), both of which

are from the r th subcarrier and the sth AP. For the simplicity
of presentation, here we define β as a general expression of
CFR amplitude from the same subcarrier. Thus, the offline
entropy definition can be expressed by

φ̂rHs
m
= −

∫
∞

−∞

p̂Hs
m
(β; r) log p̂Hs

m
(β; r)dβ (5)

Similarly, the online CFR entropy φ̂rGs
θ
can also be calculated

as the fingerprint for the subsequent stage of target’s location
determination.

In practice, it is a challenging task to implement direct eval-
uation of the Shannon entropy from real data [42], [43]. The
reason behind this dilemma is twofold: (i) Entropy has to be
approximated from the mere sample data due to the fact that
probability density function is generally unknown. (ii) Equa-
tion (5) requires numerical integration since a closed-form
solution of the entropy does not exist. Typical data-adaptive
PDF estimation methods comprise histogram estimator [44],
order statistics [45] or kernel method (a.k.a. Parzen method)
[46]. However, all of them share the major drawback of slow
convergence rate.
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In this paper, we address the entropy estimation problem
by leveraging the more accurate and consistent Autoregres-
sive (AR) modeling approach [47]. The basic principle of
this approach is to estimate the unknown PDF in the form
of Power Spectral Density (PSD) of an unit variance AR
process. This unit variance condition ensures that PSD shares
the basic requirements of PDF (i.e., positive function that
integrates to one).

Given the general expression of amplitude β, we define
the input CFR amplitudes from one certain subcarrier as
βI = [β(1), · · · , β(n), · · · , β(N )]>, where N is the number
of CFR packets and (·)> is the transpose operator. Since the
law is modeled as the spectrum restriction on the interval
of [−0.5,+0.5], the amplitude data have to be first rescaled
on this interval. Meanwhile, an order p AR process W (n) is
defined as the output of an all-poles filter driven by a white
noise ε(n) with variance δ2ε . It can be mathematically denoted
as [47]

W (n) =
p∑
i=1

aiW (n− i)+ ε(n). (6)

where a = {ai}1≤i≤p are the AR model parameters.
Since the CFR amplitude PDF p(β) can be equivalently

depicted by the PSD SW (β) of this AR process which is
parameterized by a set of AR parameters, the entire relations
can be then presented as [48]

p(β) = SW (β) =
σ 2
ε∣∣1+∑p

i=1 aie
−j2π iβ

∣∣2 , β ∈ [−0.5, 0.5]

(7)

where σ 2
ε is the model prediction error which is chosen so that∫ 0.5

−0.5 SW (β)dβ = 1. It is notable that AR model order needs
to be chosen appropriately at first since a low order leads
to inadequate resolution (estimator bias) while a high order
incurs spurious peaks (excessive variance). Through exten-
sive experiments, a well-run model order selection technique
known as the Exponentially Embedded Family (EEF) [49] is
adopted to select a proper p which maximizes the following
criterion.

F(p) =

 ξp − p(log(
ξp

p
)+ 1), if ξp ≥ p

0, otherwise
(8)

Here ξp is the Generalized Likelihood Ratio Test (GLRT)
statistic which can be asymptotically computed as

ξp = (N − p) log

 λ>p λp

λ>p (I−3p

(
3>p 3p

)−1
3>p )λp

 (9)

where λp = [β(p + 1), β(p + 2), · · · , β(N )]> and 3p =[
λp−1,λp−2, · · · ,λ0

]
. The detailed procedures are explicitly

described in Algorithm 1.
Thereby, the succeeding task of estimating the AR param-

eters consists of two major steps [48]:

Algorithm 1Model Order Selection Using EEF
Require:

N -dimensional CFR amplitude sample vector βI of one
certain subcarrier;
Predefined maximum AR model order pmax

Ensure:
Selected AR model order p

1: Rescale the input vector βI into [−0.5,+0.5];
2: for each i ∈ [1, pmax] do
3: Calculate the GLRT statistic ξi by (9);
4: if ξi ≥ i then
5: Obtain F(i) = ξi − i(log( ξii ) + 1) by using EEF

criterion in (8);
6: else
7: Make F(i) be zero;
8: end if
9: end for
10: Execute p = argmax

i∈[1,pmax ]
F(i);

11: Return p;

(i) We first estimate the Autocorrelation Function (ACF)
of the CFR amplitude data sequence βI by applying
the sample moment estimator, which is the statistical
average correlation estimate:

RW (i) =
1
N

N∑
n=1

ej2π iβ(n), i ∈ [0, p] (10)

(ii) AR coefficient estimation is then achieved by solving
the Yule-Walker equations using the Levinson-Durbin
recursion:

RW a = −rW (0) (11)

where RW = [rW (1), rW (2), · · · , rW (p)] and rW (i)
= [RW (1 − i),RW (2 − i), · · · ,RW (p − i)]>. Once
the AR parameters have been estimated, say â =
[â1, â2, · · · , âp]>, the AR model prediction error can
be then computed by

σ̂ 2
ε = RW (0)+

p∑
i=1

âiRW (−i) (12)

When AR PSD is determined, according to (7), the entropy
estimation can be then converted to the following form:

φ̂β = −

∫ 0.5

−0.5
p̂(β) log p̂(β)dβ

= −

∫ 0.5

−0.5
ŜW (β) log ŜW (β)dβ (13)

Additionally, a more feasible closed-form expression with-
out any numerical integration can be obtained by applying
Plancherel-Parseval formula to the right hand side of (13) [43]
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FIGURE 4. AR modeling based PDF estimation at two sample locations..
(a) Location #1. (b) Location #2.

FIGURE 5. Ambiguity test for 4 subcarriers, namely #1, #10, #20 and #30.

and yielding

φ̂β = −

∞∑
i=−∞

RW (i)Z∗W (i) (14)

where (·)∗ is the conjugate operator and ZW (i) denotes the
ith component of the AR process’s cepstrum, which can be
calculated by proceeding the inverse Fourier transform of
log ŜW (β). Thewhole entropy estimation process is presented
in Algorithm 2.
Fig. 4 illustrates the AR modeling based PDF estimates of

CFR amplitude samples at two sample locations. Both of the
estimated PDFs (Gaussian-like and non-Gaussian distribu-
tions) show good fit to the histograms which further justifies
the AR-modeling scheme in practical work. Moreover, some
shining points of AR modeling based entropy as location fin-
gerprint will also be experimentally discussed in Section V-B.

4) ENDPOINT SUBCARRIER REMOVAL
In this part, we continue to exploit the AR modeling based
entropy and shed light on some interesting observations in
the sequel.

For location fingerprinting, the spatial resolvability is a key
performance indicator for the proposed location fingerprint.
In order to validate such property of our AR entropy-based

Algorithm 2 AR Modeling Based Entropy Estimation
Require:

N -dimensional CFR amplitude sample vector βI of one
certain subcarrier;
Selected AR model order p from Algorithm 1

Ensure:
Estimated CFR amplitude entropy φ̂β

1: Rescale the input vector βI into [−0.5,+0.5];
2: Compute the autocorrelation function {RW (i)}0≤i≤p of

the rescaled data via (10);
3: Calculate ARmodel parameters â and prediction error σ̂ 2

ε

by solving Yule-Walker equations in (11) and (12);
4: Estimate AR model PSD ŜW (β) by applying (7);
5: Calculate AR entropy φ̂β using (14);
6: Return φ̂β ;

FIGURE 6. Ambiguity test for all 30 available subcarriers.

fingerprint, a simple test was taken in our lab corridor. Con-
cretely, we linearly selected 15 sample locations with 1 m
spacing. A RF transmitter was placed at one end of the corri-
dor, sending wireless packets continuously. In the meantime,
we moved a mobile receiver in sequence at these sample
locations. Around 500 CFR measurements were collected
at each location. After calculating the AR entropies of all
subcarriers at each position, we applied confusion matrix to
portray the entropy differences among these 15 locations for
each CFR subcarrier. In Fig. 5, for the visual clarity, we only
exhibit subcarrier index 1, 10, 20, 30 and experimentally
observe that the endpoint subcarriers #1 and #30 show a clear
ambiguity in terms of location differentiation.

Given that this is only a visual indication, we then utilize
the statistical Cumulative Distribution Function (CDF) to
carefully study the behavior of these entropy differences.
As depicted in Fig. 6, most subcarriers display an obvious
entropy differences for different locations while the end-
point subcarrier #1 and #30 still show the opposite, inducing
potential location differentiation errors in the next online
pattern-matching stage.

Therefore, we propose in this paper to remove the two
null endpoint subcarriers from the estimated AR entropies,
which also serves as a dimension reduction strategy to
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further improve the execution efficiency of our AR entropy
approach. Recall that we combine the CFR measurements
of the total R subcarriers from all Nr receiving antennas,
the estimated AR entropy fingerprint in the offline stage can
be hereby represented as

8̂Hs
m
= [φ̂1Hs

m
, . . . , φ̂rHs

m
, . . . , φ̂R

′

Hs
m
], r ∈ [1,R′] (15)

where R′ = R − 2 · Nr is the reduced number of subcarriers
in this case. Likewise, the online estimated AR entropy is
denoted by 8̂Gs

θ
= [φ̂1Gs

θ
, . . . , φ̂rGs

θ
, . . . , φ̂R

′

Gs
θ
], r ∈ [1,R′].

C. ONLINE POSITION ESTIMATION
For the online location determination, the mobile target is
required to be accurately mapped to the pre-designed radio
map. To quantitatively measure the similarity between the
stored entropy fingerprints and the estimated online CFR
entropies, we employ Manhattan distance [22] which is also
known as taxicab metric, capable of measuring the gap
between two points through the summation of the absolute
differences of their corresponding components.

Given the offline and online entropy fingerprints 8̂Hs
m
and

8̂Gs
θ
, we define the Manhattan distance between them as

D s
m = ‖8̂Hs

m
− 8̂Gs

θ
‖1 =

R′∑
i=1

∣∣∣φ̂iHs
m
− φ̂iGs

θ

∣∣∣ (16)

where ‖·‖1 denotes the `1 norm. It concisely reveals the phys-
ical similarity between the online fingerprints at an unknown
position and the offline dataset at the mth RP location, both
of which are measured from the sth AP. Moreover, by using
the chain rule for Shannon entropy [41], it can be proved
that the Manhattan distance of a joint entropy of independent
variables is equal to the sum of the distance for each variable’s
entropy. Under S independent AP assumption, we therefore
have the Manhattan distance for all available APs as follows.

Dm =

S∑
s=1

D s
m (17)

In order to properly obtain the location estimation of the
target, the weighted kernel regression is further adopted by
employing the distance based kernel function K and the
whole set of known reference points [36]. The estimated
location can be derived from the following equation.

ˆ̀
θ =

∑M
m=1Km`m∑M
m=1Km

(18)

Here Km is defined as the probability kernel of the mth

RP position by exponentiating its corresponding Manhattan
distance, which is presented as follows:

Km = exp(−ρDm) (19)

where ρ is the kernel coefficient which is determined to
optimally minimize the fingerprinting error by leave-one-
out cross-validation in the offline phase [35]. It is notable
that the kernel Km is equal to one if the distributions of

FIGURE 7. CNAM lab scenario with HummingBoard Pro as receiver:
(a) CNAM lab scenario; (b) TX: Laptop with Intel 5300 NIC; (c) RX:
Humming Board Pro.. (a) CNAM lab scenario. (b) TX: Laptop with Intel
5300 NIC. (c) RX: HummingBoard Pro.

the given two fingerprints are identical (i.e., Dm = 0) and
decays to zero as the dissimilarity of the two fingerprints
increases. In other words, this probability kernel provides a
flexible way to naturally handle the CFR data and hence takes
full advantage of our probabilistic AR entropy model, thus
leading to an improved localization performance.

The performance of aforementioned fingerprinting
approaches will be evaluated in the following section.

V. PERFORMANCE EVALUATION
In this section, we present the experimental evaluation of
our proposed localization system. First of all, we start by
introducing the experimental setup and the detailed imple-
mentation methodology. Then, the results of localization per-
formance will be discussed in Section V-B.

A. EXPERIMENTAL SETUP
1) EXPERIMENTAL PRESENTATION
(a) Environment: The entire experiments are conducted

in the CEDRIC laboratory of CNAM (a typical
office environment in a multistorey building as shown
in Fig. 7a). This lab office is a large room with an area
of over 200m2. The indoor space is partitioned into sev-
eral office and meeting rooms with many desks, chairs,
computers, shelves furnished inside, which forms a
complex radio propagation environment. The whole
CSI database was collected during the working time in
February, 2019.

(b) Configuration: We conduct our real experiments on
commodity-ready off-the-shelf Wi-Fi devices [17].
Specifically, by working in the 5GHz band of IEEE
802.11n monitor mode, we use an HP Elitebook 8530w
laptop as the signal transmitter (TX) and an Humming-
Board Pro (HMB) as the mobile receiver (RX), which
are exhibited in Fig. 7b and Fig. 7C. Both devices are
equipped with Intel Wi-Fi Link (IWL) 5300 NIC and
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FIGURE 8. Floor plan of the lab scenario.

run 64-bit Ubuntu 14.04OS andDebian 8.0OS, respec-
tively. Additionally, for our antenna settings, each
Wi-Fi device is equipped with three omni-directional
antennas to support 3× 3 MIMO configuration.

(c) Implementation: As mentioned above, we implement
the CSI data collection in our lab scenario. Fig. 8 shows
the floor plan of this 15m×15m laboratory with amain
corridor alongside several office and meeting rooms.
The HP laptop serving as signal transmitter is fixed on
the table of the central office room. Under injection
mode, it is designed to intermittently transmit at the rate
of 100 packets per second using only one transmitting
antenna. It is worth mentioning that one transmitter
setting is highly sufficient and well-performed in this
lab scenario. If necessary, we may resort to multiple
transmitters for the future larger testbed. The blue dots
shown in Fig. 8 denote the 70 training reference points
with one meter spacing and the 30 testing locations
are marked as red stars. In the offline training phase,
the CSI measurements are collected by the lightweight
HMB at these reference points to build up the raw
radio map. At each point, around 5000 CSI packets
are stored as RF signatures in the firmware. In the
online phase, we then move the HMB receiver among

30 testing locations to obtain the same size of CSI
packets. In addition, all receiver ends are placed at the
same height, constructing a simple 2-D platform for the
precise indoor position estimation.

2) BENCHMARKS AND PERFORMANCE METRICS
In this part, we evaluate three existing probabilistic finger-
print positioning systems for the comparison purpose. As dis-
cussed in Section II, these include Horus [20], FIFS [19]
and PinLoc [28]. Considering that the original PinLoc sys-
tem conducted war-driving procedure in a set of predefined
1 m × 1 m grids, known as spots, in order to provide a fair
comparison, we modify PinLoc to use the same training set
that we use in the proposed EntLoc system.

As for performance metrics, we define the localization
error as Euclidean distance between the estimated location
and the mobile user’s actual position, which is presented as
‖ˆ̀θ − `θ‖ =

√
(x̂θ − xθ )2 + (ŷθ − yθ )2. When there are Na

testing locations, we evaluate the localization performance by
using Mean Error (ME) metric which can be calculated as

ME =
1
Na

Na∑
i=1

√
(x̂i − xi)2 + (ŷi − yi)2 (20)

where (xi, yi) and (x̂i, ŷi) are the actual and estimated coordi-
nates at the ith testing location, respectively.

B. EXPERIMENTAL RESULTS
In this section, we evaluate the experimental performance and
provide numerical results with relevant discussions.

1) AR ENTROPY PROPERTY STUDY
Since AR modeling based CFR amplitude entropy is the
cornerstone of our fingerprint localization system, prior to
accuracy analysis, we first evaluate the following two key
characteristics of our proposed AR entropy fingerprint in
location fingerprinting.
Temporal Stability: Practically, the channel response fluc-

tuate frequently as the indoor environment varies over time.
To investigate the robustness of our AR entropy based fin-
gerprinting system, we design and implement a daytime mea-
surement test in our lab. Specifically, the HummingBoard Pro

FIGURE 9. Temporal stability for three fingerprint signatures during the entire working times of one day (8 hours).
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was configured to periodically record CFR measurements at
a fixed position from a transmitter placed in the next-door
room from 9 a.m. to 5 p.m. during a busy working day. About
500 CFR packets were collected every 10 minutes. Indoor
furniture remained static with several personnel in the vicinity
moving around. Next, we divide the whole measurements
into 100 groups and compute the AR entropy, averaged CFR
amplitude and the corresponding RSS mean value, respec-
tively. For the purpose of fair comparison, we normalize the
three metrics in the same range. As shown in Fig. 9, our AR
entropy based fingerprint displays the lowest variance while
the coarse-grained MAC layer RSS suffers the most severe
fluctuations. It is reasonable that the environment changes
do impact the time-varying channel response but cause less
influence over its statistical entropy derivate.
Spatial Proximity: For indoor fingerprinting localization

system, a good online signature is deemed to be qualified
when it is capable of presenting similar trait with the offline
signatures from the neighboring reference points. Based on
the realistic testbed shown in Fig. 8, we experimentally chose
two testing locations which are under LoS and NLoS con-
dition, respectively. At each location, the multi-dimensional
estimatedAR entropy from all three RX antennas is compared
with the entropy vectors of the corresponding four neighbor-
ing RP positions. Results illustrated in Fig. 10a demonstrate
that for LoS test location #1, our AR modeling based entropy
shows good spatial proximity with the fingerprints in the
vicinity. For most subcarrier indices, the entropy value fits
well in the center of its four neighbors. Especially for NLoS
test location #2 in Fig. 10b, even though the neighboring
entropies are relatively inconsistent (differ from different
RX antennas), the overall multi-dimensional entropies at the
center location can still capture the local minimal differ-
ences (Manhattan distance in our case) from its neighbors.
This robust spatial property enables our AR modeling based

FIGURE 10. Proximity test under (a) LoS condition; (b) NLoS condition..
(a) Test Location #1. (b) Test Location #2.

FIGURE 11. Accuracy of AR entropy against its original CFR amplitude.

entropy to be a strong candidate as fingerprint for most exist-
ing indoor positioning systems.

2) LOCALIZATION ACCURACY
This section provides a variety of numerical results in respect
of localization accuracy, which firmly validates the superi-
ority of our proposed localization system over other indoor
geolocation schemes.
Comparison with CFR: We begin the localization accuracy

evaluation by comparing our proposed AR entropy finger-
print with its original CFR amplitude. It is worth mentioning
that these two fingerprint schemes follow the same online
protocol (i.e., using Manhattan distance as similarity metric
and kernel regression to figure out user location). Fig. 11
shows the CDF of localization errors for AR based entropy
fingerprint and its original CFR amplitude. Specifically, our
AR entropy approach shows a better performance with 90%
positioning errors less than 2.69 m while CFR amplitude
signature can only reach the level of 50th percentile. The
1.84 m ME of our proposed entropy scheme also precedes
CFR amplitude based method whose mean sum error rises to
2.92m. Since AR modeling based entropy accurately reflects
the statistical distribution of the given CFR amplitudes, which
unfortunately endure much more channel fluctuations, it can
thus achieve better localization performance.
Comparison with CIR: Given that CIR is the inverse

Fourier version of CFR, both of them should convey equiva-
lent physical information. One may anticipate similar local-
ization performance for these two channel response signa-
tures. However, as shown in Fig. 12, our AR entropy based
scheme maintains less than 2.69 meters localization error
with the probability of 0.9, which outperforms CIR ampli-
tude based entropy with only 63% percentage of the same
positioning error. Meanwhile, the mean error of the proposed
CFR amplitude entropy scheme is 1.84 m, which is also
superior over CIR entropy approach with the mean error of
2.64 m. A possible explanation would be that most variations
of CIR distribute within only a few time indices (i.e., first
10 taps), while the frequency diversity spans the entire range
of CFR subcarrier indices, making the structures of CFRmore
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FIGURE 12. Accuracy of AR entropy against its time domain CIR.

TABLE 1. Detailed localization accuracy of all different methods.

distinguishable with each other [14]. Moreover, as expected,
CIR entropy based fingerprint has better location estimation
precision than its original CIR amplitude signature. The for-
mer precedes around 1.2 m localization error of the 90th
percentile accuracy.
Comparison with the state-of-the-art: After comparing

with the two most potential competitors, namely CFR and
CIR amplitude schemes, ourEntLoc system is then readily set
to challenge other existing location fingerprinting systems.
More specifically, as mentioned in Section V-A.2, we design
a fair framework to compare our proposed AR entropy based
localization approach with PinLoc-like, FIFS and Horus sys-
tems, respectively. As can be observed in Fig. 13, our pro-
posed system achieves the 90th percentile error of 2.69 m,
which outperforms PinLoc-like approach, FIFS and Horus

FIGURE 13. Accuracy of proposed EntLoc against state-of-the-arts.

FIGURE 14. AR entropy box plot for (a) Raw CFR and (b) Filtered CFR..
(a) Raw CFR. (b) Filtered CFR.

with the same error level of 63%, 57% and 28%, respectively.
Additionally, in order to provide an in-depth and comprehen-
sive comparison for these localization systems, we enumerate
the respective maximum error (Max. err.), minimum error
(Min. err.), mean error (Mean err.) and the 90th percentile
accuracy (Acc. at 90%) in Table 1. Apart from the 90th
percentile accuracy, our EntLoc system is able to achieve
the lowest mean error of 1.84 m compared with PinLoc-
like, FIFS and Horus systems, improving the localization
precision by 27.3%, 34.9% and 47.4%, respectively. As for
maximum andminimum errors, EntLoc can still dominate the
general accuracy evaluation. It only falls behind FIFS with
0.08 m in terms of minimum error, which can be neglected in
realistic indoor environment.

3) IMPACT OF PRE-PROCESSING TECHNIQUE
Recall that we present a tap filtering based pre-processing
technique in Section IV-B.2. Firstly the raw CFR measure-
ments are converted into its time domain CIR by IFFT.
Once removing irrelevant noise component in CIR, we can
subsequently obtain a smoothed and finer version of CFR
by applying FFT. It is interesting to study the impact of
this approach to see how it can improve our localization
performance. To this end, we design a fingerprint robustness
based evaluation scheme. In particular, we manually record
10000 raw CFR measurements at one predefined location.
By taking into account three RX antennas, we divide these
CFRs into 100 subgroups and calculate the AR entropy of
their amplitudes for each subgroup. Afterwards, we conduct
the same procedures on the filtered CFR measurements and
lay out the differences. As displayed in Fig. 14, we show
the AR entropy box plot of selected subcarriers from one
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FIGURE 15. AR entropy variances for raw CFR and filtered CFR.

RX antenna out of visual clarity. Specifically, the filtered
CFR entropy achieves less variation and reduces the statistical
outliers to a great extent. Furthermore, we can also observe
from Fig. 15 that for considering all three RX antennas,
the filtered CFR entropy has an overall lower variance than
its original raw CFRs. The above observations reveal that
our pre-processing technique makes AR entropy based fin-
gerprint more robust and can thus guarantee a preferable
localization performance in the online location estimation
phase.

4) IMPACT OF PACKET NUMBER FOR ENTROPY ESTIMATION
Since AR entropy estimation process requires sufficient CFR
samples, larger number of samples can provide more accurate
entropy estimation while increasing computational complex-
ity. How to determinate the CFR packet number for entropy
calculation becomes a trade-off problem which needs to be
balanced in our localization system. Here we devise an AR
entropy variance based scheme to select the optimal number
of CFR packets. The motive lies in the fact that if the entropy
variance is small enough, which can already guarantee a good
accuracy, there is no need to import more CFR samples to
increase computational burden. To be more specific, by test-
ing the packet number ranging from 10 to 5000, we observe
in Fig. 16 that 50 CFR packets can provide stable enough
AR entropy estimates, which can further promote robust
fingerprinting performance. So we choose and fix this packet
number for all entropy estimation processes in our indoor
positioning implementations.

5) IMPACT OF RX ANTENNA NUMBERS
In this part, we study the impact of RX antenna number on the
localization performance. Intuitively, using more antennas
at receiver end brings about more diverse channel response
measurements, thus containing more location-specific infor-
mation. We then study the localization accuracy differences
for three RX antennas to deepen the understanding of our
proposed localization system. As exhibited in Fig. 17, our
AR entropy based localization systemwith three RX antennas
is able to obtain superior estimation error precision over the
same platforms with less antennas. Numerically, the three-
antenna configuration can achieve less than 2.69 m localiza-
tion error within the probability of 0.9, while the two and

FIGURE 16. AR entropy variance changes with different CFR packet
number selections.

FIGURE 17. Localization accuracy under three different RX antenna
configurations.

single antenna structures can only reach the same percentage
level with the larger error of 4.1 m and 5.2 m, respectively.
It validates the aforementioned assumption and encourages
us to make full use of all three RX antennas in our indoor
location fingerprinting system.

VI. CONCLUSION
In this paper, we presented EntLoc, an AR entropy based
indoor location fingerprinting system using CSI amplitude
information. In EntLoc, a tap filtering scheme was first uti-
lized to remove the noisy component in raw CFR measure-
ments. To capture the most informative statistical information
of CFR while maintaining a simple structure, we adopted
AR modeling based entropy as the fingerprint to construct
a robust offline radio map. In the online phase, we proposed
to use Manhattan distance as similarity metric and resorted to
kernel regression scheme to infer the target’s location. Exper-
imental results from the lightweight HummingBoard device
showed a superior localization performance of our proposed
EntLoc system with an average accuracy improvement of
27.3%, 34.9% and 47.4%, in comparison with prominent
PinLoc, FIFS and Horus system, respectively. In addition,
we also examined the impacts of several different parameters
on EntLoc’s performance, which enables us with deepening
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insights to efficiently and productively implement our pro-
posed localization system.

For our future work, since the phase information is aban-
doned in this work due to the entropy’s limited capability of
differentiating uniformly distributed signatures, one possible
solution may turn to incorporating the CFR phase-based AoA
information as the additional fingerprint to further improve
localization accuracy.
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