Convergence of a finite-volume scheme for a heat equation with a multiplicative stochastic force - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Convergence of a finite-volume scheme for a heat equation with a multiplicative stochastic force

Résumé

We present here the discretization by a finite-volume scheme of a heat equation perturbed by a multiplicative noise of Itô type and under homogeneous Neumann boundary conditions. The idea is to adapt well-known methods in the de-terministic case for the approximation of parabolic problems to our stochastic PDE. In this paper, we try to highlight difficulties brought by the stochastic perturbation in the adaptation of these deterministic tools.
Fichier principal
Vignette du fichier
Bauzet_Nabet.pdf (141.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02442422 , version 1 (16-01-2020)
hal-02442422 , version 2 (29-01-2020)

Identifiants

  • HAL Id : hal-02442422 , version 1

Citer

Caroline Bauzet, Flore Nabet. Convergence of a finite-volume scheme for a heat equation with a multiplicative stochastic force. 2020. ⟨hal-02442422v1⟩
308 Consultations
226 Téléchargements

Partager

More