Convergence of a finite-volume scheme for a heat equation with a multiplicative stochastic force - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Convergence of a finite-volume scheme for a heat equation with a multiplicative stochastic force

Résumé

We present here the discretization by a finite-volume scheme of a heat equation perturbed by a multiplicative noise of Itô type and under homogeneous Neumann boundary conditions. The idea is to adapt well-known methods in the de-terministic case for the approximation of parabolic problems to our stochastic PDE. In this paper, we try to highlight difficulties brought by the stochastic perturbation in the adaptation of these deterministic tools.
Fichier principal
Vignette du fichier
FVCA9_Bauzet_Nabet_Final.pdf (141.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02442422 , version 1 (16-01-2020)
hal-02442422 , version 2 (29-01-2020)

Identifiants

  • HAL Id : hal-02442422 , version 2

Citer

Caroline Bauzet, Flore Nabet. Convergence of a finite-volume scheme for a heat equation with a multiplicative stochastic force. Finite Volumes for Complex Applications IX, Jun 2020, Bergen, Norway. ⟨hal-02442422v2⟩
308 Consultations
226 Téléchargements

Partager

More