Métastabilité d'EDP stochastiques et déterminants de Fredholm
Résumé
La métastabilité apparaît lorsqu'un système thermodynamique, tel que l'eau en surfusion (qui est liquide à température négative), se retrouve du « mauvais » côté d'une transition de phase, et reste pendant un temps très long dans un état différent de son état d'équilibre. Il existe de nombreux modèles mathématiques décrivant ce phénomène, dont des modèles sur réseau à dynamique stochastique. Dans ce texte, nous allons nous intéresser à la métastabilité dans des équations aux dérivées partielles stochastiques (EDPS) paraboliques. Certaines de ces équations sont mal posées, et ce n'est que grâce à des progrès très récents dans la théorie des EDPS dites singulières qu'on sait construire des solutions, via à une procédure de renormalisation. L'étude de la métastabilité dans ces systèmes fait apparaître des liens inattendus avec la théorie des déterminants spectraux, dont les déterminants de Fredholm et de Carleman-Fredholm.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...