Abnormal Curves in a Zermelo Navigation Problem in the Plane and the Fan Shape of Small Time Balls - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Abnormal Curves in a Zermelo Navigation Problem in the Plane and the Fan Shape of Small Time Balls

Résumé

In this article, based on two cases studies, we discuss the role of abnormal geodesics in planar Zermelo navigation problems. Such curves are limit curves of the accessibility set, in the domain where the current is strong. The problem is set in the frame of geometric time optimal control, where the control is the heading angle of the ship and in this context, abnormal curves are shown to separate time minimal curves from time maximal curves and are both small time minimizing and maximizing. We describe the small time minimal balls. For bigger time, a cusp singularity can occur in the abnormal direction, which corresponds to a conjugate point along the nonsmooth geodesic. It is interpreted in terms of regularity property of the time minimal value function.
Fichier principal
Vignette du fichier
2020-BCGW-preprint_V4.pdf (333.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02437507 , version 1 (13-01-2020)
hal-02437507 , version 2 (24-07-2020)
hal-02437507 , version 3 (27-07-2020)
hal-02437507 , version 4 (16-12-2020)
hal-02437507 , version 5 (09-04-2021)
hal-02437507 , version 6 (10-01-2022)

Identifiants

  • HAL Id : hal-02437507 , version 4

Citer

Bernard Bonnard, Olivier Cots, Joseph Gergaud, Boris Wembe. Abnormal Curves in a Zermelo Navigation Problem in the Plane and the Fan Shape of Small Time Balls. 2020. ⟨hal-02437507v4⟩
1388 Consultations
573 Téléchargements

Partager

More