Longest increasing paths with Lipschitz constraints - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2022

Longest increasing paths with Lipschitz constraints

Résumé

The Hammersley problem asks for the maximal number of points in a monotonous path through a Poisson point process. It is exactly solvable and notoriously known to belong to the KPZ universality class, with a cube-root scaling for the fluctuations. Here we introduce and analyze a variant in which we impose a Lipschitz condition on paths. Thanks to a coupling with the classical Hammersley problem we observe that this variant is also exactly solvable. It allows us to derive first and second orders asymptotics. It turns out that the cube-root scaling only holds for certain choices of the Lipschitz constants.
Fichier principal
Vignette du fichier
Lipschitz-arxiv.pdf (1.08 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02437174 , version 1 (13-01-2020)
hal-02437174 , version 2 (16-12-2021)

Identifiants

Citer

Anne-Laure Basdevant, Lucas Gerin. Longest increasing paths with Lipschitz constraints. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2022, 58 (3), ⟨10.1214/21-AIHP1220⟩. ⟨hal-02437174v2⟩
80 Consultations
78 Téléchargements

Altmetric

Partager

More