Distributing deep neural networks for maximising computing capabilities and power efficiency in swarm
Abstract
Deploying neural networks models over embedded devices have an increased interest and many works is ongoing on that topic. Energy consumption, model sizes and inference time are critical issues as explained in the literature. In the context of IoT and edge computing, tradeoff have been studied in order to get a low cost but rapid answer, robust to connection issue exploiting early exiting or distributing deep neural networks. Those approaches exploits the cloud as an endpoint, balancing the load with respect to different computing capabilities. In this paper, we propose to extend those approaches to networks of embedded devices such as a swarm of drones, where every device has the same computing capabilities (in terms of energy and speed). Computing load may be balanced among the whole swarm in order to maximise either the lifetime of specific devices or lifetime of the whole swarm. We develop criteria to best cut and distribute those networks, validate them through power measurement and express the different tradeoffs we have to address.
Domains
Signal and Image ProcessingOrigin | Files produced by the author(s) |
---|
Loading...